Skip to main content
Chemistry LibreTexts

8.2: Self-Avoiding Walks

  • Page ID
    294307
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    To account for excluded volumes, one can enumerate polymer configurations in which no two beads occupy the same site. Such configurations are called self-avoiding walks (SAWs). Theoretically it is predicted that the number of configurations for a random walk on a cubic lattice should scale with the number of beads as \(\Omega_p (n) \propto z^n n^{\gamma - 1}\), where \(\gamma\) is a constant which is equal to 1 for a random walk. By explicitly evaluating self-avoiding walks (SAWs) on a cubic lattice it can be shown that

    \[\Omega_p (n) = 0.2 \alpha^n n^{\gamma - 1}\nonumber\]

    where \(\alpha = 4.68\) and \(\gamma = 1.16\), and the chain entropy is

    \[S_p (n) = k_B [n \ln \alpha + (\gamma - 1) \ln n - 1.6].\nonumber\]

    Comparing this expression with our first result \(\Omega_P = Mz(z - 1)^{n - 2}\) we note that in the limit of a random walk on a cubic lattice, α=z=6, when we exclude only the back step for placing the next bead atop the preceeding one \(\alpha = (z - 1) =5\), and the numerically determined value is \(\alpha = 4.68\).

    _______________________________________

    2. C. Vanderzande, Lattice Models of Polymers (Cambridge University Press, Cambridge, UK, 1998).


    This page titled 8.2: Self-Avoiding Walks is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.