Skip to main content
Chemistry LibreTexts

Echellette Grating (Griffith)

  • Page ID
    291447
  • In-Class Exercise

    CHEM341. Instrumental Analysis

    Echellette-Type Reflective Diffraction Grating:

    Consider the close-up view of an Echellette grating shown below.  Imagine two incoming beams of radiation that are parallel and have the same wavelength (monochromatic). [Note: this ignores all of the other wavelengths of light that are hitting the diffraction grating.]  If the distance between blazes (d) is on the order of the wavelength of light hitting the grating, then we can assume that beams 1 and 2 reflect as “point sources” (see two-point source wave tank video).

    Diagram_EchelletteGrating.png

    Draw the reflection of each beam as a wave front (not a beam) emerging from a point source.

    Where will the reflected waves interfere constructively?

     

     

    On the diagram below, draw the diffracted beams for 1 and 2.  The diffracted beams will follow the locations of maximum constructive interference, and will define a diffraction angle that is specific to the wavelength of the incoming light.

    Diagram_EchelletteGrating.png

     

    Grating.png

    From: Principles of Instrumental Analysis, 6th Edition, D.A. Skoog, F.J. Holler, S.R. Crouch, 2007, Thomson Brooks/Cole

    Contributors and Attributions

    • Was this article helpful?