# Problem 5

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$
1. Calculate the pH of a solution that is prepared by mixing 75 ml of 0.088 M aniline with 50 ml of 0.097 M 2-nitrophenol.

From the table, we can determine that aniline (An) is a base and nitrophenol (HNp) is an acid. This solution consists of a mixture of an acid and a base, so the first thing we must consider is that a neutralization reaction takes place. In this case we also note that aniline is a very weak base (Kb = 3.94$$\times$$10-10) and nitrophenol is a very weak acid (Ka = 5.83$$\times$$10-8). The value of Kn is calculated below.

$\mathrm{K_n = K_a \times K_b \times 10^{14} = (5.83 \times 10^{-8})(3.94 \times 10^{-10})(10^{14}) = 2.3 \times 10^{-3}}\nonumber$

This value is fairly small, so we cannot assume that this neutralization reaction will go to completion. Instead we anticipate that this reaction will go to a small extent. Since it goes to only a small extent, we can try making the assumption that x is small compared to the initial concentrations of the aniline (0.0528 >> x) and nitrophenol (0.0388 >> x).

\begin{align} & &&\ce{An}\hspace{35px} + &&\ce{HNp} \hspace{25px}\leftrightarrow &&\ce{AnH+} \hspace{25px} + &&\ce{Np-}\nonumber\\ &\ce{Initial} &&0.0528 &&0.0388 &&0 &&0\nonumber\\ &\ce{Equilibrium} &&0.0528 - \ce{x} &&0.0388 - \ce{x} &&\ce{x} &&\ce{x}\nonumber\\ &\ce{Assumption} &&0.0528 >> \ce{x} &&0.0388 >> \ce{x} && &&\nonumber\\ &\ce{Approximation} &&0.0528 &&0.0388 &&\ce{x} &&\ce{x}\nonumber \end{align}\nonumber

These values can be plugged into the Kn expression to solve for x:

$\mathrm{K_n = \dfrac{[AnH^+][Np^-]}{[An][HNp]} = \dfrac{(x)(x)}{(0.0528)(0.0388)} = 2.3\times10^{-3}}\nonumber$

$\mathrm{x = 2.17\times10^{-3}}\nonumber$

Now we could solve the two Henderson-Hasselbalch equations for each of the conjugate pairs, since we know the concentrations of both members of each pair.

$\mathrm{pH = pK_a + \log\left(\dfrac{[An]}{[AnH^+]} \right) = 4.596 + \log\left(\dfrac{0.0528}{0.00217} \right ) = 5.98}\nonumber$

$\mathrm{pH = pK_a + \log\left(\dfrac{[Np^-]}{[HNp]} \right) = 7.234 + \log\left(\dfrac{0.00217}{0.0388} \right ) = 5.98}\nonumber$

The two identical values suggest that the pH of the solution will be 5.98. It is interesting to check the assumptions that were used in calculating the values.

$\dfrac{0.00217}{0.0388}\times100=5.6\% \hspace{60px} \dfrac{0.00217}{0.0528}\times 100 = 4.1\%\nonumber$

One does meet the 5% rule, the other is just a little over. This might suggest that solving a quadratic is in order, however, if you solve the quadratic and substitute in the values, you will still get a pH of 5.98.