Skip to main content
Chemistry LibreTexts

Spherical Harmonics Visualization (Python Notebook)

  • Page ID
    283935
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Source: https://github.com/DalInar/schroding...lization.ipynb

    The Legendre Polynomials

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.special import lpmv
    
    ls = [0,1,2,3]
    x=np.linspace(-1,1,100)
    
    plt.figure()
    
    for l in ls:
        plt.plot(x,lpmv(0,l,x),label=r'$l=$'+str(l))
    plt.title(r'Legendre Polynomials, $P_l(x)$')
    plt.xlabel(r'$x$')
    plt.ylabel(r'$P_l(x)$')
    plt.legend()
    plt.grid()
    plt.show()

    The Legendre Polynomials on a polar plot

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.special import lpmv
    
    ls = [0,1,2,3]
    
    thetas = np.linspace(0,2*np.pi,200)
    
    plt.figure(figsize=(8,8))
    for i in range(0, len(ls)):
        l=ls[i]
        r = lpmv(0,l,np.cos(thetas))
        plt.polar(thetas, abs(r),label=r'$l=$'+str(l))
    plt.title(r'Associated Legendre Polynomials, $||P_l(x)||$')
    plt.ylabel(r'$||P_l(x)||$')
    plt.legend()
    plt.show()

    The Associated Polynomials  

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.special import lpmv
    
    ls = [0,1,1,1,2]
    ms = [0,-1,0,1,1]
    
    x=np.linspace(-1,1,100)
    
    plt.figure()
    
    for i in range(0, len(ls)):
        l=ls[i]
        m=ms[i]
        plt.plot(x,lpmv(m,l,x),label=r'$l=$'+str(l))
    plt.title(r'Associated Legendre Polynomials, $P_l^m(x)$')
    plt.xlabel(r'$x$')
    plt.ylabel(r'$P_l^m(x)$')
    plt.legend()
    plt.show()

     The Associated Polynomials on a Polar plot

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.special import lpmv
    
    ls = [0,1,1,1,2]
    ms = [0,-1,0,1,1]
    thetas = np.linspace(0,2*np.pi,200)
    
    plt.figure(figsize=(8,8))
    for i in range(0, len(ls)):
        l=ls[i]
        m=ms[i]
        r = lpmv(m,l,np.cos(thetas))
        plt.polar(thetas, abs(r),label=r'$l=$'+str(l)+r', $m=$'+str(m))
    plt.title(r'Associated Legendre Polynomials, $||P_l^m(x)||$')
    plt.ylabel(r'$||P_l^m(x)||$')
    plt.legend()
    plt.show()

    The Associated Polynomials in 3D 

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.special import sph_harm
    import mpl_toolkits.mplot3d.axes3d as axes3d
    import matplotlib.colors as mcolors
    
    l=2
    m=1
    
    thetas = np.linspace(0, np.pi, 20)
    phis = np.linspace(0, 2*np.pi, 20)
    
    (Theta,Phi)=np.meshgrid(thetas,phis) 
    s_harm=sph_harm(m, l, Phi, Theta)
       
    R = abs(s_harm)
    X = R * np.sin(Theta) * np.cos(Phi)
    Y = R * np.sin(Theta) * np.sin(Phi)
    Z = R * np.cos(Theta)
    
    cmap = plt.get_cmap('jet')
    norm = mcolors.Normalize(vmin=Z.min(), vmax=Z.max())
    
    fig = plt.figure(figsize=(8,8))
    ax = fig.add_subplot(1,1,1, projection='3d')
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('jet'),facecolors=cmap(norm(R)),
        linewidth=0, antialiased=False, alpha=0.5)
    plt.title(r'Spherical Harmonics, $Y_l^m(\theta,\phi)$'+r', $l=$'+str(l)+r', $m=$'+str(m))
    plt.xlabel(r'$x$')
    plt.ylabel(r'$y$')
    plt.ylabel(r'$z$')
    
    plt.show()

     


    Spherical Harmonics Visualization (Python Notebook) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?