Answers to Chapter 11 Study Questions
- Page ID
- 11281
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
- \(\mathrm{sodium\: chlorate = NaClO_3}\)
\(\mathrm{284\: g\: solution \times \dfrac{12.0\:g\:NaClO_3}{100\:g\:solution}\times\dfrac{1\:mol\:NaClO_3}{106.4\:g\:NaClO_3}=0.320\: moles}\)
- \(\mathrm{mole\: fraction =\dfrac{moles\:C_2H_6O_2}{total\:moles}}\); \(\mathrm{moles\: C_2H_6O_2 = 120.0\: g\times\dfrac{1\:mol\:C_2H_6O_2}{62.0\:g\:C_2H_6O_2}=1.94\: moles}\)
\(\mathrm{moles\: C_3H_6O = 1.20\: kg\times\dfrac{1000\:g}{1\:kg}\times\dfrac{1\:mol\:C_3H_6O}{58.0\:g\:C_3H_6O}=20.7\: moles}\)
\(\mathrm{total\: moles = 1.94 + 20.7 = 22.6\: moles}\); \(\mathrm{mole\: fraction =\dfrac{1.94\:mol\:C_2H_6O_2}{22.6\:moles}=0.0857}\)
- \(\mathrm{\dfrac{6.90\:mol\:KOH}{1\:L\:solution}\times\dfrac{1\:L}{1000\:mL}\times\dfrac{1\:mL}{1.29\:g}\times\dfrac{56.1\:g\:KOH}{1\:mol\:KOH}=\dfrac{0.300\:g\:KOH}{g\:solution}=30.0\%\: KOH}\)
\(\mathrm{30.0\%\: KOH = 30.0\: g\: KOH + 70.0\: g\: H_2O;\: molality = \dfrac{moles\: KOH}{kg\: water}}\)
\(\mathrm{\dfrac{30.0\:g\:KOH}{70.0\:g\:H_2O}\times\dfrac{1000\:g\:H_2O}{1\:kg\:H_2O}\times\dfrac{1\:mol\:KOH}{56.1\:g\:KOH}=\dfrac{7.64\: moles\: KOH}{kg\: water}}\)
- \(\mathrm{methanol = CH_3OH}\)
\(\mathrm{molarity=\dfrac{moles\:CH_3OH}{L\:solution}}\); \(\mathrm{12.8\: g\: CH_3OH\times\dfrac{1\:mol\:CH_3OH}{32.0\:g\:CH_3OH}=0.400\: mol\: CH_3OH}\)
\(\mathrm{volume\: CH_3OH = 12.8\: g\times\dfrac{1\:mL}{0.791\:g}=16.2\: mL}\); \(\mathrm{volume\: water = 144\: mL}\)
\(\mathrm{total\: volume\: of\: solution = 16.2\: mL + 144\: mL = 160\: mL = 0.160\: L}\)
\(\mathrm{molarity =\dfrac{0.400\:mol\:CH_3OH}{0.160\:L\:solution}=2.50\:M}\)
- The solubility of gases decreases as temperature increases. Two everyday examples of this are: 1) that soda becomes “flat” faster at room temperature than in the refrigerator since the solubility of \(\ce{CO2}\) is lower at 25°C than at 4°C, and 2) as water is heated, well before it boils, bubbles of air appear, since the solubility of air is decreasing during heating.
- Add a small crystal. If it dissolves, the solution was unsaturated. If it doesn't dissolve, the solution was saturated. If more than the crystal comes out of solution, then the solution was supersaturated.
- \(\mathrm{\Delta T_f = 1.86\: ^\circ C \times \dfrac{moles\: solute\: particles}{kg\: water}}\)
\(\mathrm{\Delta T_f = 1.86\, ^\circ C \times\dfrac{0.11\:moles}{0.055\:kg\:H_2O}=3.72\, ^\circ C}\); \(\mathrm{T_f = 0 - \Delta T_f = 0 - 3.72^\circ C = -3.72^\circ C}\)
- \(\mathrm{\Delta T_f = 1.86\: ^\circ C \times \dfrac{moles\: solute\: particles}{kg\: water}}\); \(\mathrm{calcium\: chloride = CaCl_2}\)
\(\mathrm{moles\: particles = 27.8\: g\: CaCl_2 \times\dfrac{1\:mol\:CaCl_2}{111\:g\:CaCl_2}\times\dfrac{3\:mol\:ions}{1\:mol\:CaCl_2}=0.751\: mol\: particles}\)
\(\mathrm{\Delta T_f=1.86\,^\circ C\times\dfrac{0.751\:mol\:particles}{0.250\:kg\:H_2O}=5.59\,^\circ C}\); \(\mathrm{T_f = -5.59\: ^\circ C}\)
(\(\ce{CaCl2}\) is an electrolyte and it is important to remember that there are 3 moles of ions per mole of \(\ce{CaCl2}\). The freezing point is three times lower than it would be for a nonelectrolyte.)
- \(\mathrm{molar\: mass = \dfrac{mass}{moles}}\); \(\mathrm{mass = 80.0\: g}\); find moles
\(\mathrm{moles=\dfrac{\Delta T_f}{1.86}\times kg\:H_2O=\dfrac{4.65\, ^\circ C}{1.86}\times 0.200=0.500\:moles}\)
\(\mathrm{molar\: mass =\dfrac{80.0\: g}{0.500\: moles}= 160\: \dfrac{g}{mole}}\)
- From Table 11.5, for benzene: \(\mathrm{K_b = 2.53\dfrac{^\circ C}{m}}\) and \(\mathrm{T_b = 80.1^\circ C}\).
\(\mathrm{\Delta T_b=2.53\,^\circ C/m\times\dfrac{0.500\:mol}{0.200\:kg}=6.32\,^\circ C}\); \(\mathrm{T_b = 80.1^\circ C + 6.32^\circ C = 86.4 ^\circ C}\)
- \(\mathrm{molar\: mass = \dfrac{mass}{moles}}\); \(\mathrm{mass = 45.0\: g}\); find moles; \(\mathrm{\Delta T_b = 90.2^\circ C - 80.1^\circ C = 10.1^\circ C}\)
\(\mathrm{moles=\dfrac{\Delta T_f}{2.53}\times kg\:benzene =\dfrac{10.1\,^\circ C}{2.53}\times0.0750=0.300\:moles}\)
\(\mathrm{molar\: mass=\dfrac{45.0\:g}{0.300\:moles}=150\: \dfrac{g}{mole}}\)


