Skip to main content
Chemistry LibreTexts

Answers to Chapter 04 Study Questions

  • Page ID
    11904
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \(\newcommand{\ket}[1]{\left| #1 \right>} \)

    \( \newcommand{\bra}[1]{\left< #1 \right|} \)

    \( \newcommand{\braket}[2]{\left< #1 \vphantom{#2} \right| \left. #2 \vphantom{#1} \right>} \)

    \( \newcommand{\qmvec}[1]{\mathbf{\vec{#1}}} \)

    \( \newcommand{\op}[1]{\hat{\mathbf{#1}}}\)

    \( \newcommand{\expect}[1]{\langle #1 \rangle}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

      1. \(\mathrm{\textrm{strong acid: } HNO_3(aq) \rightarrow H^+(aq) + NO_3^-(aq)}\)
      2. \(\mathrm{\textrm{weak acid: } HClO(aq) \rightleftharpoons H^+(aq) + ClO^-(aq)}\)
      3. \(\mathrm{\textrm{weak base: } NH_3(aq) + H_2O \rightleftharpoons NH_4^+(aq) + OH^-(aq)}\)
      4. \(\mathrm{\textrm{neutral: } NaNO_3(s) \rightarrow Na^+(aq) + NO_3^-(aq)}\)
      5. \(\mathrm{\textrm{strong base: } Ba(OH)_2(s)\rightarrow Ba^{2+}(aq) + 2OH^-(aq)}\)

      1. \(\mathrm{\dfrac{29.2\:g\:NaCl}{0.250\:L}\times\dfrac{1\:mol\:NaCl}{58.4\:g}=2.00\: M\: NaCl}\)
      2. \(\mathrm{Volume_{solution\: A}\times Molarity_{solution\: A} = Volume_{solution\: B}\times Molarity_{solution\: B}}\)
        \(\mathrm{125\: ml \times 0.350\: M\: NaCl = x\: ml \times 2.00\: M\: NaCl}\)
        \(\mathrm{x=\dfrac{125\:ml\times0.350\:M}{2.00\:M}= 21.9\: ml}\)

    1. \(\mathrm{200\: ml\: solution\: \times\dfrac{2.50\:moles\:C_6H_{12}O_6}{1000\:ml\:solution}\times\dfrac{180.0\:g\:C_6H_{12}O_6}{1\:mole\:C_6H_{12}O_6}=90.0\: g\: C_6H_{12}O_6}\)

      1. \(\mathrm{Mg(s) + 2HCl(aq)\rightarrow MgCl_2(aq) + H_2(g)}\),
        [or \(\mathrm{Mg(s) + 2H^+(aq)\rightarrow Mg^{2+}(aq) + H_2(g)}\)]
      2. \(\mathrm{125\: ml \times\dfrac{2.00\:moles\:HCl}{1000\:ml}\times\dfrac{1\:mole\:H_2}{2\:moles\:HCl}= 0.125\: moles\: H_2}\)

      1. Precipate forms. \(\mathrm{Fe^{3+}(aq) + 3OH^-(aq) \rightarrow Fe(OH)_3(s)}\)
      2. No Reaction. (\(\ce{(NH4)2CO3}\) and \(\ce{LiCl}\) are both soluble)
      3. Precipate forms. \(\mathrm{Ni^{2+}(aq) + S^{2-}(aq) \rightarrow NiS(s)}\)

    1. Lots of possibilities: Pick a soluble \(\mathrm{Sr^{2+}}\) and a soluble \(\mathrm{SO_4^{2-}}\), such as: \(\mathrm{Sr(NO_3)_2}\) and \(\mathrm{Na_2SO_4}\).

    1. any strong acid + strong base: \(\mathrm{H^+(aq) + OH^-(aq) \rightarrow H_2O}\)

    1. At neutralization, \(\mathrm{moles_{acid} = moles_{base}}\)

    \(\mathrm{Volume_{acid} \times Molarity_{acid} = Volume_{base} \times Molarity_{base}}\)

    \(\mathrm{Volume_{base}\times 2.00\: M = 12.5\: ml \times 0.0800\: M}\)

    \(\mathrm{Volume_{base}=\dfrac{12.5\:ml\times0.0800\:M}{2.00\:M}=0.500\:ml}\)

      1. \(\mathrm{3Pb(NO_3)_2(aq) + 2AlCl_3(aq)\rightarrow 2Al(NO_3)_3(aq) + 3PbCl_2(s)}\).
      2. \(\mathrm{2.48\: mL \times\dfrac{0.300\:moles\:AlCl_3}{1000\:mL\:solution}\times\dfrac{3\:moles\:Pb(NO_3)_2}{2\:mol\:AlCl_3}\times\dfrac{1000\:mL}{0.200\:mol\:Pb^{2+}}=5.58\: mL}\)
      3. \(\mathrm{2.48\: mL \times\dfrac{0.300\:moles\:AlCl_3}{1000\:mL\:solution}\times\dfrac{3\:moles\:PbCl_2}{2\:mol\:AlCl_3}\times\dfrac{278.1\:g\:PbCl_2}{1\:mol\:PbCl_2}=0.310\: g}\)

    1. \(\mathrm{2Fe(NO_3)_3(aq) + 3Na_2CO_3(aq)\rightarrow 6NaNO_3(aq) + Fe_2(CO_3)_3(s)}\)

    This is a limiting reactant problem, so first determine which reactant is limiting.

    \(\mathrm{71.3\: mL\: Fe(NO_3)_3 \times\dfrac{0.500\:moles\:Fe(NO_3)_3}{1000\:mL\:solution}\times\dfrac{1\:mole\:Fe_2(CO_3)_3}{2\:mol\:Fe(NO_3)_3}\times\dfrac{291.7\:g\:Fe_2(CO_3)_3}{1\:mol\:Fe_2(CO_3)_3}}\)

    \(\mathrm{=5.20\: g\: Fe_2(CO_3)_3}\)

    \(\mathrm{112\: mL\: Na_2CO_3\times\dfrac{0.800\:moles\:Na_2CO_3}{1000\:mL\:solution}\times\dfrac{1\:mole\:Fe_2(CO_3)_3}{3\:mol\:Na_2CO_3}\times\dfrac{291.7\:g\:Fe_2(CO_3)_3}{1\:mol\:Fe_2(CO_3)_3}}\)

    \(\mathrm{=8.71\: g\: Fe_2(CO_3)_3}\)

    Therefore, 5.20 g \(\ce{Fe2(CO3)3}\) is formed.

    1. \(\mathrm{3.94\: g\: Cu\:\times\dfrac{1\:mole\:Cu}{63.54\:g}\times\dfrac{8\:mol\:HNO_3}{3\:mol\:Cu}\times\dfrac{1000\:ml\:solution}{2.50\:mol\:HNO_3}=66.1\: ml\: solution}\)

    This page titled Answers to Chapter 04 Study Questions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Delmar Larsen.

    • Was this article helpful?