Answers to Chapter 03 Study Questions
- Page ID
- 11926
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\(\newcommand{\ket}[1]{\left| #1 \right>} \)
\( \newcommand{\bra}[1]{\left< #1 \right|} \)
\( \newcommand{\braket}[2]{\left< #1 \vphantom{#2} \right| \left. #2 \vphantom{#1} \right>} \)
\( \newcommand{\qmvec}[1]{\mathbf{\vec{#1}}} \)
\( \newcommand{\op}[1]{\hat{\mathbf{#1}}}\)
\( \newcommand{\expect}[1]{\langle #1 \rangle}\)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
-
- \(\mathrm{3(12.0) + 8(1.01) + 3(16.0)=92.1\: g/mole}\)
- 92.1 g
- 6.02 × 1023 molecules
- \(\mathrm{0.217\: moles\times\dfrac{92.1\:g}{1\:mole}=20.0\:g}\)
-
- 4 atoms (one \(\ce{N}\) + \(\ce{3 H}\))
- \(\mathrm{1\: mole\: NH_3\:\times\dfrac{6.02\times10^{23}\:molecules}{1\:mole\:NH_3}\times\dfrac{4\:atoms}{1\:molecule}=2.41\times10^{24}\: atoms}\)
- \(\mathrm{3.40\: g\: NH_3\times\dfrac{1\:mole\:NH_3}{17.0\:g\:NH_3}\times\dfrac{6.02\times10^{23}\:molecules}{1\:mole\:NH_3}\times\dfrac{4\:atoms}{1\:molecule}=4.82 \times 10^{23}\: atoms}\)
- \(\mathrm{Molar\: mass\: of\: NaNO_2 = 23.0 + 14.0 + 2(16.0)=69.0\: g/mole}\)
\(\mathrm{\%\: Na = \dfrac{23.0}{69.0} = 33.3\%\: Na}\); \(\mathrm{\%\: N = \dfrac{14.0}{69.0} = 20.3\%\: N}\); \(\mathrm{\%O = \dfrac{2(16.0)}{69.0} = 46.4\%\: O}\)
33.3% \(\ce{Na}\), 20.3% \(\ce{N}\) and 46.4% \(\ce{O}\).
-
- In 100 g of this compound, there are 40.7 g \(\ce{C}\), 5.1 g \(\ce{H}\), and 54.2 g \(\ce{O}\)
\(\mathrm{40.7\: g\: C\times\dfrac{1\:mole\:C}{12.0\:g\:C} = 3.39\: moles\: C}\) | \(\mathrm{\dfrac{3.39}{3.39}= 1\times 2 = 2}\) |
\(\mathrm{5.1\: g\: H\times\dfrac{1\:mole\:H}{1.0\:g\:H} =5.1\: moles\: H}\) | \(\mathrm{\dfrac{5.1}{3.39}= 1.5 \times 2=3}\) |
\(\mathrm{54.2\: g\: O\times\dfrac{1\:mole\:O}{16.0\:g\:O}=3.39\: moles\: O}\) | \(\mathrm{\dfrac{3.39}{3.39}= 1\times 2 = 2}\) |
empirical formula = \(\ce{C2H3O2}\)
- \(\mathrm{Molar\: mass\: of\: C_2H_3O_2 = 2(12.0) + 3(1.0) + 2(16.0)=59.0\: g/mole}\)
\(\mathrm{\dfrac{118}{59.0} = 2 \rightarrow molecular\: formula = C_4H_6O_4}\)
-
- In 25.0 g of compound, there are 7.20 g \(\ce{Mg}\), 3.55 g \(\ce{C}\) and \(\mathrm{25.0-(7.20+3.55) = 14.25 g O}\).
\(\mathrm{7.20\: g\: Mg\times\dfrac{1\:mole\:Mg}{24.3\:g\:Mg}=0.296\: moles\: Mg}\) | \(\mathrm{\dfrac{0.296}{0.296}= 1}\) |
\(\mathrm{3.55\: g\: C\times\dfrac{1\:mole\:C}{12.0\:g\:C}=0.296\: moles\: C}\) | \(\mathrm{\dfrac{0.296}{0.296}= 1}\) |
\(\mathrm{14.25\: g\: O\:\times\dfrac{1\:mole\:O}{16.0\:g\:O}=0.891\: moles\: O}\) | \(\mathrm{\dfrac{0.891}{0.296}= 3}\) |
\(\mathrm{formula = MgCO_3}\)
- \(\mathrm{\%\: Mg = \dfrac{7.20}{25.0} = 28.8\%\: Mg}\); \(\mathrm{\% C = \dfrac{3.55}{25.0} = 14.2 \% \:C}\); \(\mathrm{\% O = \dfrac{14.25}{25.0} = 57.0\%\: O}\). (You should get the same result using molar mass and atomic masses.)
- \(\mathrm{13.9\: g\: compound\times\dfrac{28.8\:g\:Mg}{100\:g\:compound}=4.00\: g\: Mg}\)
- \(\mathrm{0.290\: mol\: C\times\dfrac{12.0\:g\:C}{1\:mole\:C}\times\dfrac{100\:g\:compound}{14.2\:g\:C}=24.5\: g\: compound}\)
- \(\mathrm{mass\: of\: Zn=33.64\: g - 32.00\: g=1.64\: g\: Zn}\)
\(\mathrm{mass\: of\: O = 34.04\: g - 33.64\: g =0.40\: g\: O}\).
\(\mathrm{\#\: moles\: \textrm{Zn:}\:\: 1.64\: g\: Zn\times\dfrac{1\:mole\:Zn}{65.4\:g\:Zn}=0.0251\: moles\: Zn}\) | \(\mathrm{\dfrac{0.251}{0.25}= 1}\) |
\(\mathrm{\#\: moles\: \textrm{O:}\:\: 0.40\: g\: O\times\dfrac{1\:mole\:O}{16.0\:g\:O}=0.025\: moles\: O}\) | \(\mathrm{\dfrac{0.25}{0.25}= 1}\) |
\(\mathrm{formula = ZnO}\)
-
- \(\mathrm{B_2H_6(l) + 3O_2(g) \rightarrow B_2O_3(s)+ 3H_2O(l)}\)
- \(\mathrm{4PH_3(g)+8O_2(g) \rightarrow 6H_2O(l)+ P_4O_{10}(s)}\)
-
- \(\mathrm{6 Li(s) + N_2(g) \rightarrow 2 Li_3N(s)}\)
- \(\mathrm{Co(NO_3)_3(aq)+3 NaOH(aq)\rightarrow 3 NaNO_3(aq) + Co(OH)_3 (s)}\)
- \(\mathrm{Zn(s) + 2HCl(aq)\rightarrow ZnCl_2(aq) + H_2(g)}\)
- (a) is a combination (synthesis) reaction. (b) is a double replacement reaction.
-
- \(\mathrm{8.20\: moles\: SO_2\times\dfrac{2\:mol\:H_2S}{2\:mol\:SO_2}=8.20\: moles\: H_2S}\)
- \(\mathrm{1.00\: mole\: H_2S\times\dfrac{3\:mol\:O_2}{2\:mol\:H_2S}\times\dfrac{32.0\:g\:O_2}{1\:mol\:O_2}=48.0\: g\: O_2}\)
- \(\mathrm{6.82\: g\: H_2S\times\dfrac{1\:mol\:H_2S}{34.1\:g\:H_2S}\times\dfrac{2\:mol\:H_2O}{2\:mol\:H_2S}\times\dfrac{18.0\:g\:H_2O}{1\:mol\:H_2O}=3.60\: g\: H_2O}\)
- \(\mathrm{7.98\: g\: H_2S\times\dfrac{1\:mol\:H_2S}{34.1\:g\:H_2S} \times\dfrac{2\:mol\:SO_2}{2\:mol\:H_2S}\times\dfrac{64.1\:g\:SO_2}{1\:mol\:SO_2}=15.0\: g\: SO_2}\)
\(\mathrm{\% \:yield=\dfrac{actual\:yield}{theoretical\:yield}\times100\% =\dfrac{12.0\:g\:SO_2}{15.0\:g\:SO_2}\times100\%=80.0\%}\)
- \(\mathrm{2.66\: g\: H_2S\times\dfrac{1\:mol\:H_2S}{34.1\:g\:H_2S}\times\dfrac{2\:mol\:SO_2}{2\:mol\:H_2S}\times\dfrac{64.1\:g\:SO_2}{1\:mol\:SO_2}=5.00\: g\: SO_2}\)
\(\mathrm{3.00\: g\: O_2\times\dfrac{1\:mol\:O_2}{32.0\:g\:O_2}\times \dfrac{2\:mol\:SO_2}{3\:mol\:O_2}\times\dfrac{64.1\:g\:SO_2}{1\:mol\:SO_2}=4.01\: g\: SO_2}\)
\(\ce{O2}\) is limiting; 4.01 g \(\ce{SO2}\) is produced
- \(\mathrm{8.20\: moles\: SO_2\times\dfrac{2\:mol\:H_2S}{2\:mol\:SO_2}=8.20\: moles\: H_2S}\)
-
- \(\mathrm{H_2(g) + Cl_2(g) \rightarrow 2HCl(g)}\)
- \(\ce{H2}\) is limiting (\(\ce{H2}\) and \(\ce{Cl2}\) react in a ratio 1:1 ratio and there is less \(\ce{H2}\).)
- \(\mathrm{7.50\: mol\: H_2\times\dfrac{2\:mol\:HCl}{1\:mol\:H_2}=15.0\: mol\: HCl}\)
- \(\mathrm{9.00-7.50=1.50\: mol\: Cl_2\: left}\)