Skip to main content
Chemistry LibreTexts

6.5: Polarity

  • Page ID
    52355
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    So far we have considered solutions that are made up of molecules that are either polar or non-polar or ionic species that have properties that are relatively easy to predict. Many substances, however, have more complex structures that incorporate polar, ionic, and non-polar groups. For example, many biomolecules cannot be classified as exclusively polar or non-polar, but are large enough to have distinct regions of differing polarity. They are termed amphipathic. Even though the structures of proteins such as RNA, DNA, and other biomolecules are complex, we can use the same principles involving entropic and enthalpic effects of interacting with water to understand the interactions between biomolecules, as well as within a given biomolecule. Biomolecules are very large compared to the molecules considered in most chemistry courses, and often one part of the molecule interacts 117 with another part of the same molecule. The intramolecular interactions of biological macromolecules, together with their interactions with water, are key factors in predicting their shapes.118

    page130image23840

    Let us begin with a relatively simple biomolecular structure. In the previous section we looked at the solubility of oils in water. Oils or fats are also known as a triglycerides. In the figure, R and R’ indicate hydrocarbon chains, which have the generic structure CH3CnH2n, shown in the figure. If you treat an oil or fat with sodium hydroxide (NaOH), the resulting chemical reaction leads to the formation of what is known as a fatty acid (in this example, oxygen atoms are maroon). A typical fatty acid has a long, non- polar hydrocarbon chain and one end that often contains both a polar and ionic group. The polar head of the molecule interacts with water with little or no increase in entropy, unlike a hydrocarbon, where the lack of H-bonding interactions with water forces a more ordered shell of water molecules around the hydrocarbon molecule, leading to a decrease in entropy. On the other hand, in water the non-polar region of the molecule creates a decrease in entropy as water molecules are organized into a type of cage around it—an unfavorable outcome in terms of ΔS, and therefore ΔG as well. So, which end of the molecule “wins”? That is do such molecules dissolve in water or not? The answer is: Both! These amphipathic molecules become arranged in such a manner that their polar groups are in contact with the water, while their non-polar regions are not. (See whether you can draw out such an arrangement, remembering to include the water molecules in your drawing.)

    page130image24280

    In fact, there are several ways to produce such an arrangement, depending in part on the amount of water in the system. A standard micelle is a spherical structure with the polar heads on the outside and the non-polar tails on the inside. It is the simplest structure that can accommodate both hydrophilic and hydrophobic groups in the same molecule. If water is limiting, it is possible to get an inverted micelle arrangement, in which polar head groups (and water) are inside and the non-polar tails point outward (as shown in the figure). Other highly organized structures can form spontaneously depending on the structure of the head group and the tail. For example, lipid molecules have multiple hydrocarbon tails and carbon ring structures called sterols. That structure creates a lipid bilayer—a polar membrane made up of two lipid molecule layers that form cellular and organellar boundaries in all organisms. It should be noted that these ordered structures are possible only because dispersing the lipid molecules in water results in a substantial decrease in the disorder of the system. In fact, many ordered structures associated with living systems, such as the structure of DNA and proteins, are the result of entropy-driven processes, yet another counterintuitive idea. This is one of the many reasons why biological systems do not violate the laws of thermodynamics and why it is scientifically plausible that life arose solely due to natural processes!119

    page131image25168

    Questions to Answer

    • If you had a compound that you suspected might form micelles:
      • What structural features would you look for?
      • How might you design an experiment to determine whether the compound would form micelles in water?
      • What would be the experimental evidence?
    • Why do you think some amphipathic molecules form spherical clusters (micelles or liposomes) whereas others form sheets (bilayers)? (Hint: consider the shape of the individual molecule itself.)
    • Amphipathic molecules are often called surfactants. For example, the compounds used to disperse oil spills are surfactants. How do you think they work?

    Questions to Ponder

    • If membrane formation and protein folding are entropy-driven processes, does that make the origins of life seem more or less “natural” to you?

    References

    117 Intramolecular means within the same molecule. Intermolecular means between or among separate molecules.

    118 For examples, see the internet game “foldit”, which uses intramolecular interactions to predict how proteins will fold into the lowest energy shape.

    119 Why do you use soap and shampoo? Why not use just water? The answer is, of course, that water doesn’t do a very good job of getting dirt and oil of your skin and hair because grime is just not soluble in water. Soaps and detergents are excellent examples of amphipathic molecules. They both have a polar head and a long non-polar tail, which leads to the formation of micelles. Oily molecules can then be sequestered within these micelles and washed away.


    6.5: Polarity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?