Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 15 results
  • https://chem.libretexts.org/Courses/Madera_Community_College/Concepts_of_Physical_Science/14%3A_Nuclear_Radiation/14.09%3A_Nuclear_Binding_Energy
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Courses/Valley_City_State_University/Chem_122/Chapter_9%3A_Nuclear_Chemistry/9.3%3A_Patterns_of_Nuclear_Stability
    Protons and neutrons are called nucleons and a nuclide is an atom with a specific number nucleons. Unstable nuclei decay spontaneously are radioactive and its emissions are called radioactivity.  Nucl...Protons and neutrons are called nucleons and a nuclide is an atom with a specific number nucleons. Unstable nuclei decay spontaneously are radioactive and its emissions are called radioactivity.  Nuclei are bound by the strong nuclear force. Stable nuclei generally have even numbers of protons and neutrons with a ratio of at least 1. Nuclei that contain magic numbers of protons and neutrons are often especially stable including superheavy elements, with atomic numbers near 126.
  • https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2200%3A_General_Chemistry_II_(Mink)/21%3A_Nuclear_Chemistry/21.02%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Courses/Brevard_College/CHE_310%3A_Inorganic_Chemistry_(Biava)/12%3A_Nuclear_Chemistry/12.02%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Courses/College_of_the_Canyons/CHEM_202%3A_General_Chemistry_II_OER/10%3A_Nuclear_Chemistry/10.03%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Courses/City_College_of_San_Francisco/Chemistry_101B/10%3A_Nuclear_Chemistry/10.1%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2100%3A_General_Chemistry_I_(Mink)/21%3A_Nuclear_Chemistry/21.02%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_1e_(OpenSTAX)/21%3A_Nuclear_Chemistry/21.01%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_2e_(OpenStax)/21%3A_Nuclear_Chemistry/21.01%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Courses/University_of_Kentucky/UK%3A_General_Chemistry/21%3A_Nuclear_Chemistry/21.1%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.
  • https://chem.libretexts.org/Under_Construction/Purgatory/CHEM_2100%3A_General_Chemistry_I_(Mink)/17%3A_Nuclear_Chemistry/17.01%3A_Nuclear_Structure_and_Stability
    An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force calle...An atomic nucleus consists of protons and neutrons, collectively called nucleons. Although protons repel each other, the nucleus is held tightly together by a short-range, but very strong, force called the strong nuclear force. A nucleus has less mass than the total mass of its constituent nucleons. This “missing” mass is the mass defect, which has been converted into the binding energy that holds the nucleus together according to Einstein’s mass-energy equivalence equation, E = mc2.

Support Center

How can we help?