Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 4 results
  • https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Intermediate_Physical_Organic_(Morsch)/02%3A_Reaction_Kinetics/2.03%3A_Chemical_Kinetics_II-_Reaction_Mechanisms/2.3.10%3A_Predicting_Rate_Laws_from_Proposed_Mechanisms
    Because a proposed mechanism can only be valid if it is consistent with the rate law found experimentally, the rate law plays a central role in the investigation of chemical reaction mechanisms. The d...Because a proposed mechanism can only be valid if it is consistent with the rate law found experimentally, the rate law plays a central role in the investigation of chemical reaction mechanisms. The discussion above introduces the problems and methods associated with collecting rate data and with finding an empirical rate law that fits experimental concentration-versus-time data. We turn now to finding the rate laws that are consistent with a particular proposed mechanism.
  • https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/05%3A_Chemical_Kinetics_Reaction_Mechanisms_and_Chemical_Equilibrium/5.12%3A_Predicting_Rate_Laws_from_Proposed_Mechanisms
    Because a proposed mechanism can only be valid if it is consistent with the rate law found experimentally, the rate law plays a central role in the investigation of chemical reaction mechanisms. The d...Because a proposed mechanism can only be valid if it is consistent with the rate law found experimentally, the rate law plays a central role in the investigation of chemical reaction mechanisms. The discussion above introduces the problems and methods associated with collecting rate data and with finding an empirical rate law that fits experimental concentration-versus-time data. We turn now to finding the rate laws that are consistent with a particular proposed mechanism.
  • https://chem.libretexts.org/Courses/Los_Angeles_Trade_Technical_College/Analytical_Chemistry/2%3A_Analytical_Chemistry_2.0_(Harvey)/07%3A_Equilibrium_Chemistry/7.01%3A_Reversible_Reactions_and_Chemical_Equilibria
    Although a system at equilibrium appears static on a macroscopic level, it is important to remember that the forward and reverse reactions continue to occur. A reaction at equilibrium exists in a stea...Although a system at equilibrium appears static on a macroscopic level, it is important to remember that the forward and reverse reactions continue to occur. A reaction at equilibrium exists in a steady-state, in which the rate at which a species forms equals the rate at which it is consumed. Hence, there is no further change in the amounts of these species.
  • https://chem.libretexts.org/Courses/Lakehead_University/Analytical_I/6%3A_Equilibrium_Chemistry/6.01%3A_Reversible_Reactions_and_Chemical_Equilibria
    Although a system at equilibrium appears static on a macroscopic level, it is important to remember that the forward and reverse reactions continue to occur. A reaction at equilibrium exists in a stea...Although a system at equilibrium appears static on a macroscopic level, it is important to remember that the forward and reverse reactions continue to occur. A reaction at equilibrium exists in a steady-state, in which the rate at which a species forms equals the rate at which it is consumed. Hence, there is no further change in the amounts of these species.

Support Center

How can we help?