Analytical titrations using oxidation–reduction reactions were introduced shortly after the development of acid–base titrimetry. A titrant can serve as its own indicator if its oxidized and its reduce...Analytical titrations using oxidation–reduction reactions were introduced shortly after the development of acid–base titrimetry. A titrant can serve as its own indicator if its oxidized and its reduced forms differ significantly in color, which initially limited redox titrations to a few titrants. Other titrants require a separate indicator. The first such indicator, diphenylamine, was introduced in the 1920s. Other redox indicators soon followed increasing the applicability of redox titrimetry.
Analytical titrations using oxidation–reduction reactions were introduced shortly after the development of acid–base titrimetry. A titrant can serve as its own indicator if its oxidized and its reduce...Analytical titrations using oxidation–reduction reactions were introduced shortly after the development of acid–base titrimetry. A titrant can serve as its own indicator if its oxidized and its reduced forms differ significantly in color, which initially limited redox titrations to a few titrants. Other titrants require a separate indicator. The first such indicator, diphenylamine, was introduced in the 1920s. Other redox indicators soon followed increasing the applicability of redox titrimetry.