Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 16 results
  • https://chem.libretexts.org/Workbench/Pick_Your_Poison%3A_Introduction_to_Materials_Toxicology/31%3A_Synthetic_Polymers/31.06%3A_Olefin_Metathesis_Polymerization
    Alkene metathesis reactions are gaining wide popularity in synthesizing unsaturated olefinic compounds. Central to this catalysis is a metal carbene intermediate that reacts with olefins to give diffe...Alkene metathesis reactions are gaining wide popularity in synthesizing unsaturated olefinic compounds. Central to this catalysis is a metal carbene intermediate that reacts with olefins to give different olefinic compounds. When two different olefin substrates are used, the reaction is called the “cross metathesis” owing to the fact that the olefinic ends are exchanged. In a process called, olefin metathesis polymerization, unsaturated olefinic polymers can be created by a metathesis reaction.
  • https://chem.libretexts.org/Courses/East_Tennessee_State_University/CHEM_4110%3A_Advanced_Inorganic_Chemistry/10%3A_Organometallic_Chemistry/10.02%3A_Nomenclature_Ligands_and_Classification/10.2.03%3A_Metal-Carbon_Bonds/10.2.3.02%3A_Carbenes
    Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, thes...Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, these ligands present some interesting synthetic problems: because free carbenes are quite unstable, ligand substitution does not cut the mustard for metal carbene synthesis.
  • https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_431%3A_Inorganic_Chemistry_(Haas)/CHEM_431_Readings/19%3A_Organometallic_Bonding_(Epic_Ligand_Survey)/19.05%3A_Carbenes
    Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, thes...Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, these ligands present some interesting synthetic problems: because free carbenes are quite unstable, ligand substitution does not cut the mustard for metal carbene synthesis.
  • https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_431%3A_Inorganic_Chemistry_(Haas)/CHEM_431_Readings/19%3A_Organometallic_Bonding_(Epic_Ligand_Survey)/19.03%3A_N-heterocyclic_Carbenes
    N-heterocyclic carbenes (NHCs) exhibit their unique structure, properties, and steric tunability. Unlike most metal carbenes, NHCs are typically unreactive when coordinated to a metal (with some excep...N-heterocyclic carbenes (NHCs) exhibit their unique structure, properties, and steric tunability. Unlike most metal carbenes, NHCs are typically unreactive when coordinated to a metal (with some exceptions). Like phosphines, they are commonly used to modulate the steric and electronic properties of metal complexes. In fact, the similarities between NHCs and phosphines are notable. Overall, few ligands are as effective as NHCs at ramping up the electron density on a metal center while remaining i
  • https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_III_(Morsch_et_al.)/30%3A_Synthetic_Polymers/30.05%3A_Olefin_Metathesis_Polymerization
    Alkene metathesis reactions are gaining wide popularity in synthesizing unsaturated olefinic compounds. Central to this catalysis is a metal carbene intermediate that reacts with olefins to give diffe...Alkene metathesis reactions are gaining wide popularity in synthesizing unsaturated olefinic compounds. Central to this catalysis is a metal carbene intermediate that reacts with olefins to give different olefinic compounds. When two different olefin substrates are used, the reaction is called the “cross metathesis” owing to the fact that the olefinic ends are exchanged. In a process called, olefin metathesis polymerization, unsaturated olefinic polymers can be created by a metathesis reaction.
  • https://chem.libretexts.org/Courses/Smith_College/Organic_Chemistry_(LibreTexts)/30%3A_Synthetic_Polymers/30.05%3A_Olefin_Metathesis_Polymerization
    An olefin metathesis catalyst is a transition metal compound that is capable of splitting the double bond of an alkene in half and putting the two pieces together with other alkenes. Olefin Metathesis...An olefin metathesis catalyst is a transition metal compound that is capable of splitting the double bond of an alkene in half and putting the two pieces together with other alkenes. Olefin Metathesis Polymerization The variants of metathesis often used in producing polymers are, (i) the Acyclic Diene Metathesis (ADMET) and (ii) the Ring Opening Metathesis Polymerization (ROMP), both of which produce long chain polymers
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Inorganic_Chemistry_(LibreTexts)/13%3A_Organometallic_Chemistry/13.06%3A_Metal-Carbon_Bonds/13.6.02%3A_Carbenes
    Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, thes...Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, these ligands present some interesting synthetic problems: because free carbenes are quite unstable, ligand substitution does not cut the mustard for metal carbene synthesis.
  • https://chem.libretexts.org/Courses/can/CHEM_232_-_Organic_Chemistry_II_(Puenzo)/16%3A_Synthetic_Polymers/16.06%3A_Olefin_Metathesis_Polymerization
    Alkene metathesis reactions are gaining wide popularity in synthesizing unsaturated olefinic compounds. Central to this catalysis is a metal carbene intermediate that reacts with olefins to give diffe...Alkene metathesis reactions are gaining wide popularity in synthesizing unsaturated olefinic compounds. Central to this catalysis is a metal carbene intermediate that reacts with olefins to give different olefinic compounds. When two different olefin substrates are used, the reaction is called the “cross metathesis” owing to the fact that the olefinic ends are exchanged. In a process called, olefin metathesis polymerization, unsaturated olefinic polymers can be created by a metathesis reaction.
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites_(Inorganic_Chemistry)/Advanced_Inorganic_Chemistry_(Wikibook)/01%3A_Chapters/1.28%3A_Olefin_Metathesis
    Olefin Metathesis is an organic chemical reaction that uses a metal catalyst for the transfer of substituents between olefins, or alkenes by a 4-membered ring intermediate, also known as a Chauvin Mec...Olefin Metathesis is an organic chemical reaction that uses a metal catalyst for the transfer of substituents between olefins, or alkenes by a 4-membered ring intermediate, also known as a Chauvin Mechanism. He repeated the experiment with a cyclopentene and noticed that “the polymer looked like somebody took a pair of scissors, opened up cyclopentene, and neatly sewed it up again.” Other chemists were also getting similar results of the cleavage and reformation of the olefin double bonds.
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Organometallic_Chemistry_(Evans)/02%3A_Organometallic_Ligands/2.01%3A_Carbenes
    Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, thes...Fischer carbenes, Shrock carbenes, and vinylidenes are usually actor ligands, but they may be either nucleophilic or electrophilic, depending on the nature of the R groups and metal. In addition, these ligands present some interesting synthetic problems: because free carbenes are quite unstable, ligand substitution does not cut the mustard for metal carbene synthesis.
  • https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Organometallic_Chemistry_(Evans)/02%3A_Organometallic_Ligands/2.07%3A_N-heterocyclic_Carbenes
    N-heterocyclic carbenes (NHCs) exhibit their unique structure, properties, and steric tunability. Unlike most metal carbenes, NHCs are typically unreactive when coordinated to a metal (with some excep...N-heterocyclic carbenes (NHCs) exhibit their unique structure, properties, and steric tunability. Unlike most metal carbenes, NHCs are typically unreactive when coordinated to a metal (with some exceptions). Like phosphines, they are commonly used to modulate the steric and electronic properties of metal complexes. In fact, the similarities between NHCs and phosphines are notable. Overall, few ligands are as effective as NHCs at ramping up the electron density on a metal center while remaining i

Support Center

How can we help?