This page provides an in-depth explanation of photoluminescence, dividing it into two categories: fluorescence and phosphorescence. It describes the processes, mechanisms, and factors influencing both...This page provides an in-depth explanation of photoluminescence, dividing it into two categories: fluorescence and phosphorescence. It describes the processes, mechanisms, and factors influencing both types, including radiative and non-radiative deactivation pathways. The page discusses the technological advancements in fluorescence and phosphorescence spectroscopy, related instrumentation, and depicts their quantitative applications for analyzing inorganic and organic analytes.
Photoemission is divided into two categories: fluorescence and phosphorescence. Emission of a photon from the singlet excited state to the singlet ground state—or between any two levels with the same ...Photoemission is divided into two categories: fluorescence and phosphorescence. Emission of a photon from the singlet excited state to the singlet ground state—or between any two levels with the same spin—is called fluorescence. Emission between a triplet excited state and a singlet ground state—or between any two levels that differ in their respective spin states–is called phosphorescence. Both fluorescence and phosphorescence can be used for qualitative analysis and semi-quantitative analysis.