Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 37 results
  • https://chem.libretexts.org/Courses/Lubbock_Christian_University/LCU%3A_CHE_1305_-_Introductory_Chemistry/11%3A_Energy/11.6%3A_Phase_Changes
    Fusion, vaporization, and sublimation are endothermic processes, whereas freezing, condensation, and deposition are exothermic processes. Changes of state are examples of phase changes, or phase trans...Fusion, vaporization, and sublimation are endothermic processes, whereas freezing, condensation, and deposition are exothermic processes. Changes of state are examples of phase changes, or phase transitions. All phase changes are accompanied by changes in the energy of a system. Changes from a more-ordered state to a less-ordered state (such as a liquid to a gas) are endothermic. Changes from a less-ordered state to a more-ordered state (such as a liquid to a solid) are always exothermic.
  • https://chem.libretexts.org/Courses/University_of_Missouri/MU%3A__1330H_(Keller)/11%3A_Liquids_and_Intermolecular_Forces/11.4%3A_Phase_Changes
    Fusion, vaporization, and sublimation are endothermic processes, whereas freezing, condensation, and deposition are exothermic processes. Changes of state are examples of phase changes, or phase trans...Fusion, vaporization, and sublimation are endothermic processes, whereas freezing, condensation, and deposition are exothermic processes. Changes of state are examples of phase changes, or phase transitions. All phase changes are accompanied by changes in the energy of a system. Changes from a more-ordered state to a less-ordered state (such as a liquid to a gas) are endothermic. Changes from a less-ordered state to a more-ordered state (such as a liquid to a solid) are always exothermic.
  • https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Beginning_Chemistry_(Ball)/10%3A_Solids_and_Liquids/10.03%3A_Phase_Transitions_-_Melting_Boiling_and_Subliming
    Phase changes can occur between any two phases of matter. All phase changes occur with a simultaneous change in energy. All phase changes are isothermal.
  • https://chem.libretexts.org/Courses/Fullerton_College/Beginning_Chemistry_(Chan)/10%3A_Solids_and_Liquids/10.03%3A_Phase_Transitions_-_Melting_Boiling_and_Subliming
    Phase changes can occur between any two phases of matter. All phase changes occur with a simultaneous change in energy. All phase changes are isothermal.
  • https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520)/03%3A_Thermochemistry/3.04%3A_Enthalpy_of_Reaction
    For a chemical reaction, the enthalpy of reaction (\(ΔH_{rxn}\)) is the difference in enthalpy between products and reactants; the units of \(ΔH_{rxn}\) are kilojoules per mole. Reversing a chemical r...For a chemical reaction, the enthalpy of reaction (\(ΔH_{rxn}\)) is the difference in enthalpy between products and reactants; the units of \(ΔH_{rxn}\) are kilojoules per mole. Reversing a chemical reaction reverses the sign of \(ΔH_{rxn}\).
  • https://chem.libretexts.org/Courses/can/CHEM_210%3A_General_Chemistry_I_(An_Atoms_Up_Approach)/13%3A_Thermochemistry/13.03%3A__Enthalpy_H_and_Heat_of_Reaction
    For a chemical reaction, the enthalpy of reaction (\(ΔH_{rxn}\)) is the difference in enthalpy between products and reactants; the units of \(ΔH_{rxn}\) are kilojoules per mole. Reversing a chemical r...For a chemical reaction, the enthalpy of reaction (\(ΔH_{rxn}\)) is the difference in enthalpy between products and reactants; the units of \(ΔH_{rxn}\) are kilojoules per mole. Reversing a chemical reaction reverses the sign of \(ΔH_{rxn}\).
  • https://chem.libretexts.org/Courses/can/CHEM_210%3A_General_Chemistry_I_(An_Atoms_Up_Approach)/13%3A_Thermochemistry/13.03%3A__Enthalpy_H_and_Heat_of_Reaction/13.3.02%3A_Hess'_Law
    Hess's law argues that for a chemical reaction, the enthalpy of reaction (ΔHrxn) is the difference in enthalpy between products and reactants; the units of ΔHrxn are kilojoules per mole. Reversing a c...Hess's law argues that for a chemical reaction, the enthalpy of reaction (ΔHrxn) is the difference in enthalpy between products and reactants; the units of ΔHrxn are kilojoules per mole. Reversing a chemical reaction reverses the sign of ΔHrxn. The magnitude of ΔHrxn also depends on the physical state of the reactants and the products because processes such as melting solids or vaporizing liquids are also accompanied by enthalpy changes: the enthalpy of fusion (ΔHfus) and the enthalpy of vaporiz
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-_The_Central_Science_(Brown_et_al.)/05%3A_Thermochemistry/5.04%3A_Enthalpy_of_Reaction
    For a chemical reaction, the enthalpy of reaction (\(ΔH_{rxn}\)) is the difference in enthalpy between products and reactants; the units of \(ΔH_{rxn}\) are kilojoules per mole. Reversing a chemical r...For a chemical reaction, the enthalpy of reaction (\(ΔH_{rxn}\)) is the difference in enthalpy between products and reactants; the units of \(ΔH_{rxn}\) are kilojoules per mole. Reversing a chemical reaction reverses the sign of \(ΔH_{rxn}\).
  • https://chem.libretexts.org/Courses/Lansing_Community_College/LCC%3A_Chem_151_-_General_Chemistry_I/Text/06%3A_Thermochemistry/6.06%3A_Hess's_Law
    Hess's law argues that for a chemical reaction, the enthalpy of reaction (ΔHrxn) is the difference in enthalpy between products and reactants; the units of ΔHrxn are kilojoules per mole. Reversing a c...Hess's law argues that for a chemical reaction, the enthalpy of reaction (ΔHrxn) is the difference in enthalpy between products and reactants; the units of ΔHrxn are kilojoules per mole. Reversing a chemical reaction reverses the sign of ΔHrxn. The magnitude of ΔHrxn also depends on the physical state of the reactants and the products because processes such as melting solids or vaporizing liquids are also accompanied by enthalpy changes: the enthalpy of fusion (ΔHfus) and the enthalpy of vaporiz
  • https://chem.libretexts.org/Courses/BridgeValley_Community_and_Technical_College/Consumer_Chemistry/05%3A_Solids_and_Liquids/5.02%3A_Phase_Transitions_-_Melting%2C_Boiling%2C_and_Subliming
    Phase changes can occur between any two phases of matter. All phase changes occur with a simultaneous change in energy. All phase changes are isothermal.
  • https://chem.libretexts.org/Courses/Madera_Community_College/MacArthur_Chemistry_3A_v_1.2/09%3A_Attractive_Forces/9.03%3A_Phase_Transitions
    Phase changes can occur between any two phases of matter. All phase changes occur with a simultaneous change in energy. All phase changes are isothermal.

Support Center

How can we help?