Search
- https://chem.libretexts.org/Courses/Mount_Royal_University/Chem_1202/Unit_4%3A_Chemical_Kinetics/4.6b%3A_Reaction_MechanismsThe sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reacti...The sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reaction is determined by the rate of the slowest step, called the rate-determining step. Unimolecular elementary reactions have first-order rate laws, while bimolecular elementary reactions have second-order rate laws.
- https://chem.libretexts.org/Courses/SUNY_Oneonta/Chem_221%3A_Organic_Chemistry_I_(Bennett)/3%3AStuff_to_Review_from_General_Chemistry/08%3A_Kinetics/8.05%3A_Reaction_MechanismsThe sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reacti...The sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reaction is determined by the rate of the slowest step, called the rate-determining step. Unimolecular elementary reactions have first-order rate laws, while bimolecular elementary reactions have second-order rate laws.
- https://chem.libretexts.org/Courses/University_of_Minnesota_Rochester/genchem2/3%3A_Kinetics/3.07%3A_Reaction_MechanismsThe sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reacti...The sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reaction is determined by the rate of the slowest step, called the rate-determining step. Unimolecular elementary reactions have first-order rate laws, while bimolecular elementary reactions have second-order rate laws.
- https://chem.libretexts.org/Courses/Nassau_Community_College/General_Chemistry_II/01%3A_Kinetics/1.07%3A_Reaction_MechanismsThe sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reacti...The sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reaction is determined by the rate of the slowest step, called the rate-determining step. Unimolecular elementary reactions have first-order rate laws, while bimolecular elementary reactions have second-order rate laws.
- https://chem.libretexts.org/Courses/National_Yang_Ming_Chiao_Tung_University/Chemistry_2/04%3A_Chemical_Kinetics_Brown)/4.05%3A_Reaction_MechanismsA balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law. A reaction mechanism is the microscopic path by which re...A balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law. A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. Species that are formed in one step and consumed in another are intermediates. Each elementary reaction can be described in terms of its molecularity. The slowest step in a reaction mechanism is the rate-determining step.
- https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Intermediate_Physical_Organic_(Morsch)/02%3A_Reaction_Kinetics/2.03%3A_Chemical_Kinetics_II-_Reaction_Mechanisms/2.3.01%3A_A_Mechanism_is_a_Sequence_of_Elementary_ReactionsThe mechanism of a reaction is a series of steps leading from the starting materials to the products. After each step, an intermediate is formed. The intermediate is short-lived, because it quickly un...The mechanism of a reaction is a series of steps leading from the starting materials to the products. After each step, an intermediate is formed. The intermediate is short-lived, because it quickly undergoes another step to form the next intermediate. These simple steps are called elementary reactions. Because an overall reaction is composed of a series of elementary reaction, the overall rate of the reaction is somehow dependent on the rates of those smaller reactions.
- https://chem.libretexts.org/Courses/Williams_School/Chemistry_IIA/03%3A_Chemical_Kinetics/3.06%3A_Reaction_MechanismsA balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law. A reaction mechanism is the microscopic path by which re...A balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law. A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. Species that are formed in one step and consumed in another are intermediates. Each elementary reaction can be described in terms of its molecularity. The slowest step in a reaction mechanism is the rate-determining step.
- https://chem.libretexts.org/Courses/Valley_City_State_University/Chem_122/Chapter_4%3A_Chemical_Kinetics/4.5%3A_Reaction_MechanismsThe sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reacti...The sequence of individual steps, or elementary reactions, by which reactants are converted into products during the course of a reaction is called the reaction mechanism. The overall rate of a reaction is determined by the rate of the slowest step, called the rate-determining step. Unimolecular elementary reactions have first-order rate laws, while bimolecular elementary reactions have second-order rate laws.
- https://chem.libretexts.org/Courses/Millersville_University/CHEM_341-_Physical_Chemistry_I/12%3A_Chemical_Kinetics_II/12.01%3A_Reaction_MechanismsA reaction mechanism is a set of elementary reactions steps, that when taken in aggregate define a chemical pathway that connects reactants to products. An elementary reaction is one that proceeds by ...A reaction mechanism is a set of elementary reactions steps, that when taken in aggregate define a chemical pathway that connects reactants to products. An elementary reaction is one that proceeds by a single process, such a molecular (or atomic) decomposition or a molecular collision.
- https://chem.libretexts.org/Courses/University_of_Wisconsin_Oshkosh/Chem_370%3A_Physical_Chemistry_1_-_Thermodynamics_(Gutow)/07%3A_Kinetic_Mechanisms_1/7.01%3A_Reaction_MechanismsA reaction mechanism is a series of elementary steps that outline the path from reactants to products in a chemical reaction. Elementary reactions can be unimolecular, bimolecular, or occasionally ter...A reaction mechanism is a series of elementary steps that outline the path from reactants to products in a chemical reaction. Elementary reactions can be unimolecular, bimolecular, or occasionally termolecular, though the latter usually involves rapid bimolecular steps forming and stabilizing an activated complex. A valid mechanism must match the overall stoichiometry, be consistent with observed kinetics, and account for any side products.
- https://chem.libretexts.org/Courses/San_Francisco_State_University/General_Physical_Chemistry_I_(Gerber)/12%3A_Chemical_Kinetics_II-_Reaction_Mechanisms/12.01%3A_A_Mechanism_is_a_Sequence_of_Elementary_ReactionsThe mechanism of a reaction is a series of steps leading from the starting materials to the products. After each step, an intermediate is formed. The intermediate is short-lived, because it quickly un...The mechanism of a reaction is a series of steps leading from the starting materials to the products. After each step, an intermediate is formed. The intermediate is short-lived, because it quickly undergoes another step to form the next intermediate. These simple steps are called elementary reactions. Because an overall reaction is composed of a series of elementary reaction, the overall rate of the reaction is somehow dependent on the rates of those smaller reactions.