Skip to main content
Chemistry LibreTexts

Glossary

  • Page ID
    398297
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Example and Directions
    Words (or words that have the same definition)The definition is case sensitive(Optional) Image to display with the definition [Not displayed in Glossary, only in pop-up on pages](Optional) Caption for Image(Optional) External or Internal Link(Optional) Source for Definition
    (Eg. "Genetic, Hereditary, DNA ...")(Eg. "Relating to genes or heredity")The infamous double helix https://bio.libretexts.org/CC-BY-SA; Delmar Larsen
    Glossary Entries
    Word(s)DefinitionImageCaptionLinkSource
    Thermodynamic VariablesQuantities that define the state of a system (e.g., pressure, volume, temperature, and chemical composition).    
    Equations of StateMathematical relationships that describe the state of a system, such as the ideal gas law.    
    First Law of ThermodynamicsLaw of energy conservation, stating that energy cannot be created or destroyed, only transformed.    
    ThermochemistryStudy of heat changes that occur during chemical reactions.    
    Second Law of ThermodynamicsStates that the total entropy of an isolated system always increases over time.    
    Boltzmann DistributionDescribes the distribution of particles among available energy states in a system.    
    Statistical Definition of EntropyEntropy is related to the number of possible microstates in a system, quantified by the Boltzmann constant.    
    Gibbs Free EnergyA thermodynamic potential used to predict the spontaneity of a process at constant temperature and pressure.    
    Helmholtz Free EnergyA thermodynamic potential used to predict spontaneity at constant temperature and volume.    
    Equilibria in Biochemical SystemsDescribes the balance between forward and reverse reactions in biochemical processes.    
    Kinetic Rate LawsMathematical expressions that describe the rate of a chemical reaction as a function of reactant concentrations.    
    Reaction MechanismsA step-by-step sequence of elementary reactions that leads to the overall chemical transformation.    
    Transition State TheoryTheory that explains how chemical reactions occur by describing the transition between reactants and products via a high-energy state.    
    Potential Energy SurfaceA multidimensional surface that describes the energy of a system in relation to the positions of the atoms.    
    Bonding InteractionsForces that hold atoms together within molecules (e.g., covalent, ionic, or hydrogen bonds).    
    Intermolecular ForcesForces that act between molecules, including van der Waals forces, dipole-dipole interactions, and hydrogen bonds.    
    Newtonian MechanicsA branch of physics that describes the motion of objects based on forces acting on them.    
    Molecular Dynamics SimulationsComputational simulations that model the behavior of atoms and molecules over time.    
    Analysis of Molecular Dynamics TrajectoriesThe process of interpreting the results from molecular dynamics simulations to understand molecular behavior.    
    Advanced Topics in Molecular DynamicsIn-depth concepts like enhanced sampling techniques, free energy calculations, and multiscale modeling.    
    SpectroscopyThe study of the interaction between matter and electromagnetic radiation.    
    Basic Elements of SpectroscopyComponents such as light sources, detectors, and sample cells used in spectroscopic analysis.    
    Two Masses on a Spring ModelA simplified model used to describe molecular vibrations, particularly relevant in infrared (IR) spectroscopy.    
    Infrared (IR) SpectroscopyA technique that measures the absorption of infrared light by molecules, helping identify functional groups.    
    Quantum Mechanics and Quantum Oscillator ModelDescribes molecular vibrations and energy levels as quantized.    
    FluorescenceThe emission of light by a molecule that has absorbed light or other electromagnetic radiation.    
    PhosphorescenceEmission of light from a molecule following absorption, where the emission persists longer than fluorescence.    
    Nuclear SpinThe intrinsic angular momentum of nuclei that can interact with magnetic fields.    
    Magnetic FieldA field that affects the behavior of magnetic dipoles like nuclear spins, fundamental to NMR spectroscopy.    
    Excite-Record ExperimentThe process of exciting nuclei with a magnetic pulse and recording their response to generate an NMR spectrum.    
    Chemical ShiftThe displacement of a resonance frequency relative to a standard, measured in parts per million (ppm).    
    Fourier Transformation, FTA mathematical method to convert data from the time domain (FID) into the frequency domain (NMR spectrum).    
    Spectral Sensitivity and ResolutionFactors that determine the clarity and detail of an NMR spectrum, influenced by the sample, equipment, and experimental conditions.    
    2D NMR SpectroscopyA technique that provides information on atomic interactions in a protein, allowing higher spectral resolution and better peak assignment.    
    Heteronuclear 3D NMRA three-dimensional NMR technique that involves multiple types of nuclei, enabling resonance assignments and structural analysis of proteins.    
    Protein DynamicsThe study of how proteins change shape and function in response to their environment, often analyzed through NMR.    
    Conformational StatesDifferent shapes that a protein can adopt, which can influence its biological activity.    
    NMR for Protein FunctionUsing NMR spectroscopy to understand how protein structure relates to its biological function and dynamics.    
    • Was this article helpful?