Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

8.S: Gravimetric Methods (Summary)

( \newcommand{\kernel}{\mathrm{null}\,}\)

In a gravimetric analysis, a measurement of mass or a change in mass provides quantitative information about the analyte. The most common form of gravimetry uses a precipitation reaction to generate a product whose mass is proportional to the amount of analyte. In many cases the precipitate includes the analyte; however, an indirect analysis in which the analyte causes the precipitation of another compound also is possible. Precipitation gravimetric procedures must be carefully controlled to produce precipitates that are easy to filter, free from impurities, and of known stoichiometry.

In volatilization gravimetry, thermal or chemical energy decomposes the sample containing the analyte. The mass of residue remaining after decomposition, the mass of volatile products collected with a suitable trap, or a change in mass due to the loss of volatile material are all gravimetric measurements.

When the analyte is already present in a particulate form that is easy to separate from its matrix, then a particulate gravimetric analysis may be feasible. Examples include the determination of dissolved solids and the determination of fat in foods.

8.5.1 Key Terms

coagulation
conservation of mass
coprecipitate
definitive technique
digestion
direct analysis
electrogravimetry
gravimetry
homogeneous precipitation

ignition
inclusion
indirect analysis
occlusion
particulate gravimetry
peptization
precipitant
precipitation gravimetry

quartz crystal microbalance
relative supersaturation
reprecipitation
supernatant
surface adsorbate
thermogram
thermogravimetry
volatilization gravimetry

References

  1. Smith, C. S.; Gnodi, M. T. translation of Biringuccio, V. Pirotechnia, MIT Press: Cambridge, MA, 1959.
  2. Valacárcel, M.; Ríos, A. Analyst 1995, 120, 2291–2297.
  3. (a) Moody, J. R.; Epstein, M. S. Spectrochim. Acta 1991, 46B, 1571–1575; (b) Epstein, M. S. Spectrochim. Acta 1991, 46B, 1583–1591.
  4. Von Weimarn, P. P. Chem. Revs. 1925, 2, 217–242.
  5. Bassett, J.; Denney, R. C.; Jeffery, G. H. Mendham. J. Vogel’s Textbook of Quantitative Inorganic Analysis, Longman: London, 4th Ed., 1981, p. 408.
  6. Gordon, L.; Salutsky, M. L.; Willard, H. H. Precipitation from Homogeneous Solution, Wiley: NY, 1959.
  7. Ward, R., ed., Non-Stoichiometric Compounds (Ad. Chem. Ser. 39), American Chemical Society: Washington, D. C., 1963.
  8. Method 4500-SO42– C and Method 4500-SO42– D as published in Standard Methods for the Examination of Waters and Wastewaters, 20th Ed., American Public Health Association: Washington, D. C., 1998.
  9. Jungreis, E. Spot Test Analysis; 2nd Ed., Wiley: New York, 1997.
  10. (a) Ward, M. D.; Buttry, D. A. Science 1990, 249, 1000–1007; (b) Grate, J. W.; Martin, S. J. ; White, R. M. Anal. Chem. 1993, 65, 940A–948A; (c) Grate, J. W.; Martin, S. J. ; White, R. M. Anal. Chem. 1993, 65, 987A–996A.
  11. Muratsugu, M.; Ohta, F.; Miya, Y.; Hosokawa, T.; Kurosawa, S.; Kamo, N.; Ikeda, H. Anal. Chem. 1993, 65, 2933–2937.
  12. Sinha, S. K.; Shome, S. C. Anal. Chim. Acta 1960, 24, 33–36.
  13. Adapted from Sorum, C. H.; Lagowski, J. J. Introduction to Semimicro Qualitative Analysis, Prentice-Hall: Englewood Cliffs, N. J., 5th Ed., 1977, p. 285.
  14. Grote, F. Z. Anal. Chem. 1941, 122, 395–398.
  15. Nawrocki, J.; Carr, P. W.; Annen, M. J.; Froelicher, S. Anal. Chim. Acta 1996, 327, 261–266.
  16. Fat Determination by SFE, ISCO, Inc. Lincoln, NE.
  17. Delumyea, R. D.; McCleary, D. L. J. Chem. Educ. 1993, 70, 172–173.18 Yao, S. F.; He, F. J. Nie, L. H. Anal. Chim. Acta 1992, 268, 311–314.

8.S: Gravimetric Methods (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?