Skip to main content
Chemistry LibreTexts

4.2: 21st-Century Science

  • Page ID
    211479
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    21st-Century Science

    While strategies such as chemical genetics can quicken the pace of drug discovery, other approaches may help expand the number of molecular targets from several hundred to several thousand. Many of these new avenues of research hinge on biology.

    Relatively new brands of research that are stepping onto center stage in 21st-century science include genomics (the study of all of an organism's genetic material), proteomics (the study of all of an organism's proteins), and bioinformatics (using computers to sift through large amounts of biological data). The "omics" revolution in biomedicine stems from biology's gradual transition from a gathering, descriptive enterprise to a science that will someday be able to model and predict biology. If you think 25,000 genes is a lot (the number of genes in the human genome), realize that each gene can give rise to different molecular job. Scientists estimate that humans have hundreds of thousands of protein variants. Clearly, there's lots of work to be done, which will undoubtedly keep researchers busy for years to come.


    A Chink in Cancer's Armor

    Doctors use the drug Gleevec to treat a form of leukemia, a disease in which abnormally high numbers of immune cells (larger, purple circles in photo) populate the blood.

    Recently, researchers made an exciting step forward in the treatment of cancer. Years of basic research investigating circuits of cellular communication led scientists to tailor-make a new kind of cancer medicine. In May 2001, the drug Gleevec™ was approved to treat a rare cancer of the blood called chronic myelogenous leukemia (CML). The Food and Drug Administration described Gleevec's approval as " …a testament to the groundbreaking scientific research taking place in labs throughout America."

    Researchers designed this drug to halt a cell-communication pathway that is always "on" in CML. Their success was founded on years of experiments in the basis biology of how cancer cells grow. The discovery of Gleevec in an example of the success of so-called molecular targeting: understanding how diseases arise at the level of cells, then figuring out ways to treat them. Scores of drugs, some to treat cancer but also many other health conditions, are in the research pipeline as a result of scientists' eavesdropping on how cells communicate.


    4.2: 21st-Century Science is shared under a Public Domain license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?