Skip to main content
Chemistry LibreTexts

10: Gases

  • Page ID
  • Previously, we focused on the microscopic properties of matter—the properties of individual atoms, ions, and molecules—and how the electronic structures of atoms and ions determine the stoichiometry and three-dimensional geometry of the compounds they form. We will now focus on macroscopic properties—the behavior of aggregates with large numbers of atoms, ions, or molecules. An understanding of macroscopic properties is central to an understanding of chemistry. Why, for example, are many substances gases under normal pressures and temperatures (1.0 atm, 25°C), whereas others are liquids or solids? We will examine each form of matter—gases, liquids, and solids—as well as the nature of the forces, such as hydrogen bonding and electrostatic interactions, that hold molecular and ionic compounds together in these three states.

    In this chapter, we explore the relationships among pressure, temperature, volume, and the amount of gases. You will learn how to use these relationships to describe the physical behavior of a sample of both a pure gaseous substance and mixtures of gases. By the end of this chapter, your understanding of the gas laws and the model used to explain the behavior of gases will allow you to explain how straws and hot-air balloons work, why hand pumps cannot be used in wells beyond a certain depth, why helium-filled balloons deflate so rapidly, and how a gas can be liquefied for use in preserving biological tissue.

      Thumbnail: Motion of gas molecules. The randomized thermal vibrations of fundamental particles such as atoms and molecules—gives a substance its “kinetic temperature.” Here, the size of helium atoms relative to their spacing is shown to scale under 1950 atmospheres of pressure. Image used with permission (CC BY-SA 3.0; Greg L).

      • Was this article helpful?