Skip to main content
Chemistry LibreTexts

2.7: Units Raised to a Power

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives

    • To convert a value reported in one unit raised to a power of 10, to a corresponding value in a different unit raised to the same power of 10, using conversion factors.

    Conversion factors for area and volume can also be produced by the dimensional analysis method. Just remember that if a quantity is raised to a power of 10, both the number and the unit must be raised to the same power of 10. For example, to convert \(1500 \: \text{cm}^2\) to \(\text{m}^2\), we need to start with the relationship between centimeter and meter. We know that 1 cm = 10-2 m or 100 cm =1 m, but since we are given the quantity in 1500 cm2, then we have to use the relationship:

    \[1\, cm^2 = (10^{-2}\, m)^2 = 10^{-4}\, m^2\]


    To convert centimeters squared to meters squared, use the conversion factor 0.01 meters per 1 centimeter,  squared overall


    \[1500 \: \cancel{\text{cm}}^2 \times \left( \frac{10^{-2} \: \text{m}}{1 \: \cancel{\text{cm}}} \right)^2 = 0.15 \: \text{m}^2\]


    \[1500 \: \cancel{\text{cm}}^2 \times \left( \frac{1 \: \text{m}}{100 \: \cancel{\text{cm}}} \right)^2 = 0.15 \: \text{m}^2\]


    \[1500 \: \cancel{\text{cm}}^2 \times \frac{1 \: \text{m}^2}{10,000 \: \cancel{\text{cm}^2}} = 0.15 \: \text{m}^2\]

    Example \(\PageIndex{1}\): Volume of a Sphere

    What is the volume of a sphere (radius 4.30 inches) in cubic cm (cm3)?


    Steps for Problem Solving

    What is the volume of a sphere (radius 4.30 inches) in cubic cm (cm3)?
    Identify the "given” information and what the problem is asking you to "find."

    Given: radius = 4.30 in

    Find: cm3 (volume)

    Determine other known quantities.

    Volume of a sphere: V = \(\frac{4}{3} \times \pi \times r^3 \)

    = \(\frac{4}{3} \times 3.1416 \times (4.3\underline{0}in)^3 \)

    = \(33\underline{3}.04 in^3\)

    Prepare a concept map.

    To convert inches cubed to centimeters cubed,  use conversion factor 2.54 centimeters per 1 inch, cubed overall


    \(33\underline{3}.04 \cancel{in^3} \left(\frac{2.54cm}{1 \cancel{in}}\right)^3 = 5.46 \times10^3 cm^3\)

    Think about your result.

    A centimeter is a smaller unit than an inch, so the answer in cubic centimeters is larger than the given value in cubic inches.

    Exercise \(\PageIndex{1}\)

    Lake Tahoe has a surface area of 191 square miles. What is the area in square km (km2)?

    495 km2

    Contributions & Attributions

    This page was constructed from content via the following contributor(s) and edited (topically or extensively) by the LibreTexts development team to meet platform style, presentation, and quality:

    2.7: Units Raised to a Power is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.