Skip to main content
Chemistry LibreTexts

Answers to More Chapter 04 Study Questions

  • Page ID
    11908
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

      1. \(\mathrm{FeCl_3(aq) + 3 NaOH(aq) \rightarrow Fe(OH)_3(s) + 3 NaCl(aq)}\).
      2. \(\mathrm{30.0\: mL\: \times\dfrac{0.500\:moles\:NaOH}{1000\:mL\:solution}\times\dfrac{1\:mol\:FeCl_3}{3\:mol\:NaOH}\times\dfrac{1000\:mL\:solution}{0.200\:mol\:FeCl_3}=25.0\: mL}\)
      3. \(\mathrm{30.0\: mL\: \times\dfrac{0.500\:moles\:NaOH}{1000\:mL\:solution}\times\dfrac{1\:mol\:Fe(OH)_3}{3\:mol\:NaOH}\times\dfrac{106.8\:g\:Fe(OH)_3}{1\:mol\:Fe(OH)_3}=0.534\:g}\)

    1. \(\mathrm{3 AgNO_3(aq) + AlCl_3(aq) \rightarrow Al(NO_3)_3(aq) + 3 AgCl(s)}\)

    This is a limiting reactant problem, so first determine which reactant is limiting.

    \(\mathrm{25.0\: mL\:\times\dfrac{0.200\:mol\:AgNO_3}{1000\:mL\:solution}\times\dfrac{3\:mole\:AgCl}{3\:mol\:AgNO_3}\times\dfrac{143.3\:g\:AgCl}{1\:mole\:AgCl}=0.716\: g\: AgCl}\)

    \(\mathrm{10.0\: mL\:\times\dfrac{0.150\:mol\:AgCl_3}{1000\:mL\:solution}\times\dfrac{3\:mole\:AgCl}{1\:mol\:AlCl_3}\times\dfrac{143.3\:g\:AgCl}{1\:mole\:AgCl}=0.645\: g\: AgCl}\)

    Therefore, 0.645 g \(\ce{AgCl}\) is formed.

    1. \(\mathrm{Ba(OH)_2(aq) + 2 HNO_3(aq) \rightarrow 2 H_2O(l) + Ba(NO_3)_2(aq)}\)

    \(\mathrm{25.0\: mL\:\times\dfrac{0.300\:mol\:HNO_3}{1000\:mL\:solution}\times\dfrac{1\:mole\:Ba(OH)_2}{2\:mol\:HNO_3}\times\dfrac{1000\:mL\:solution}{0.0500\:mole\:Ba(OH)_2}=75.0\: mL}\)

    1. \(\mathrm{50.0\: mL\:\times\dfrac{2.00\:mol\:KCl}{1000\:mL\:solution}\times\dfrac{74.5\:g\:KCl}{1\:mol\:KCl}=7.45\: g\: KCl}\)

    2. \(\mathrm{V_1 \times M_1 = V_2 \times M_2}\) \(\mathrm{V_1 \times 6.00\: M\: HCl = 30.0\: mL \times 0.500\: M\: HCl}\)

    \(\mathrm{V_1 = \dfrac{(30.0\: mL \times 0.500\: M)}{6.00\: M} = 2.50\: mL}\)

    1. \(\mathrm{Ba(NO_3)_2(aq) + K_2SO_3(aq) \rightarrow BaSO_3(aq) + 2 KNO_3(aq)}\)

    \(\mathrm{40.0\: mL\: \times\dfrac{0.250\:mol\:Ba(NO_3)_2}{1000\:mL\:solution}\times\dfrac{1\:mol\:BaSO_3}{1\:mol\:Ba(NO_3)_2}\times\dfrac{217.4\:g\:BaSO_3}{1\:mol\:BaSO_3}=2.17\:g}\)


    This page titled Answers to More Chapter 04 Study Questions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Delmar Larsen.

    • Was this article helpful?