Skip to main content
Chemistry LibreTexts

14.4: Relation between the Dynamic Friction Kernel and the Random Force

  • Page ID
    5309
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    From the definitions of \(R(t)\) and \(\zeta(t)\), it is straightforward to show that there is a relation between them of the form

    \[\langle R(0)R(t)\rangle = kT\zeta(t) \nonumber \]

    This relation is known as the second fluctuation dissipation theorem. The fact that it involves a simple autocorrelation function of the random force is particular to the harmonic bath model. We will see later that a more general form of this relation exists, valid for a general bath. This relation must be kept in mind when introducing models for \(R(t)\) and \zeta(t). In effect, it acts as a constraint on the possible ways in which one can model the random force and friction kernel.


    This page titled 14.4: Relation between the Dynamic Friction Kernel and the Random Force is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.

    • Was this article helpful?