Skip to main content
Chemistry LibreTexts

Chapter 14: Galvanic Cells

\( \newcommand{\tx}[1]{\text{#1}}      % text in math mode\)
 \( \newcommand{\subs}[1]{_{\text{#1}}} % subscript text\)
 \( \newcommand{\sups}[1]{^{\text{#1}}} % superscript text\)
 \( \newcommand{\st}{^\circ}            % standard state symbol\)
 \( \newcommand{\id}{^{\text{id}}}      % ideal\)
 \( \newcommand{\rf}{^{\text{ref}}}     % reference state\)
 \( \newcommand{\units}[1]{\mbox{$\thinspace$#1}}\)
 \( \newcommand{\K}{\units{K}}  % kelvins\)

\( \newcommand{\degC}{^\circ\text{C}}} % degrees Celsius\)

 \( \newcommand{\br}{\units{bar}}  % bar (\bar is already defined)\)
 \( \newcommand{\Pa}{\units{Pa}}\)
 \( \newcommand{\mol}{\units{mol}}  % mole\)
 \( \newcommand{\V}{\units{V}}  % volts\)
 \( \newcommand{\timesten}[1]{\mbox{$\,\times\,10^{#1}$}}\)
 \( \newcommand{\per}{^{-1}}  % minus one power\)
 \( \newcommand{\m}{_{\text{m}}}  % subscript m for molar quantity\)
 \( \newcommand{\CVm}{C_{V,\text{m}}} % molar heat capacity at const.V\)
 \( \newcommand{\Cpm}{C_{p,\text{m}}} % molar heat capacity at const.p\)
 \( \newcommand{\kT}{\kappa_T} % isothermal compressibility\)
 \( \newcommand{\A}{_{\text{A}}}  % subscript A for solvent or state A\)
 \( \newcommand{\B}{_{\text{B}}}  % subscript B for solute or state B\)
 \( \newcommand{\bd}{_{\text{b}}}  % subscript b for boundary or boiling point\)
 \( \newcommand{\C}{_{\text{C}}}  % subscript C\)
 \( \newcommand{\f}{_{\text{f}}}  % subscript f for freezing point\)
 \( \newcommand{\mA}{_{\text{m},\text{A}}} % subscript m,A (m=molar)\)
 \( \newcommand{\mB}{_{\text{m},\text{B}}} % subscript m,B (m=molar)\)
 \( \newcommand{\mi}{_{\text{m},i}}        % subscript m,i (m=molar)\)
 \( \newcommand{\fA}{_{\text{f},\text{A}}} % subscript f,A (for fr. pt.)\)
 \( \newcommand{\fB}{_{\text{f},\text{B}}} % subscript f,B (for fr. pt.)\)
 \( \newcommand{\xbB}{_{x,\text{B}}}       % x basis, B\)
 \( \newcommand{\xbC}{_{x,\text{C}}}       % x basis, C\)
 \( \newcommand{\cbB}{_{c,\text{B}}}       % c basis, B\)
 \( \newcommand{\mbB}{_{m,\text{B}}}       % m basis, B\)
 \( \newcommand{\kHi}{k_{\text{H},i}}      % Henry's law constant, x basis, i\)
 \( \newcommand{\kHB}{k_{\text{H,B}}}      % Henry's law constant, x basis, B\)
 \( \newcommand{\arrow}{\,\rightarrow\,} % right arrow with extra spaces\)
 \( \newcommand{\arrows}{\,\rightleftharpoons\,} % double arrows with extra spaces\)
 \( \newcommand{\ra}{\rightarrow} % right arrow (can be used in text mode)\)
 \( \newcommand{\eq}{\subs{eq}} % equilibrium state\)
 \( \newcommand{\onehalf}{\textstyle\frac{1}{2}\D} % small 1/2 for display equation\)
 \( \newcommand{\sys}{\subs{sys}} % system property\)
 \( \newcommand{\sur}{\sups{sur}} % surroundings\)
 \( \renewcommand{\in}{\sups{int}} % internal\)
 \( \newcommand{\lab}{\subs{lab}} % lab frame\)
 \( \newcommand{\cm}{\subs{cm}} % center of mass\)
 \( \newcommand{\rev}{\subs{rev}} % reversible\)
 \( \newcommand{\irr}{\subs{irr}} % irreversible\)
 \( \newcommand{\fric}{\subs{fric}} % friction\)
 \( \newcommand{\diss}{\subs{diss}} % dissipation\)
 \( \newcommand{\el}{\subs{el}} % electrical\)
 \( \newcommand{\cell}{\subs{cell}} % cell\)
 \( \newcommand{\As}{A\subs{s}} % surface area\)
 \( \newcommand{\E}{^\mathsf{E}} % excess quantity (superscript)\)
 \( \newcommand{\allni}{\{n_i \}} % set of all n_i\)
 \( \newcommand{\sol}{\hspace{-.1em}\tx{(sol)}}\)
 \( \newcommand{\solmB}{\tx{(sol,$\,$$m\B$)}}\)
 \( \newcommand{\dil}{\tx{(dil)}}\)
 \( \newcommand{\sln}{\tx{(sln)}}\)
 \( \newcommand{\mix}{\tx{(mix)}}\)
 \( \newcommand{\rxn}{\tx{(rxn)}}\)
 \( \newcommand{\expt}{\tx{(expt)}}\)
 \( \newcommand{\solid}{\tx{(s)}}\)
 \( \newcommand{\liquid}{\tx{(l)}}\)
 \( \newcommand{\gas}{\tx{(g)}}\)
 \( \newcommand{\pha}{\alpha}        % phase alpha\)
 \( \newcommand{\phb}{\beta}         % phase beta\)
 \( \newcommand{\phg}{\gamma}        % phase gamma\)
 \( \newcommand{\aph}{^{\alpha}}     % alpha phase superscript\)
 \( \newcommand{\bph}{^{\beta}}      % beta phase superscript\)
 \( \newcommand{\gph}{^{\gamma}}     % gamma phase superscript\)
 \( \newcommand{\aphp}{^{\alpha'}}   % alpha prime phase superscript\)
 \( \newcommand{\bphp}{^{\beta'}}    % beta prime phase superscript\)
 \( \newcommand{\gphp}{^{\gamma'}}   % gamma prime phase superscript\)
 \( \newcommand{\apht}{\small\aph} % alpha phase tiny superscript\)
 \( \newcommand{\bpht}{\small\bph} % beta phase tiny superscript\)
 \( \newcommand{\gpht}{\small\gph} % gamma phase tiny superscript\)

\( \newcommand{\upOmega}{\Omega}\)

 \( \newcommand{\dif}{\mathop{}\!\mathrm{d}}   % roman d in math mode, preceded by space\)
 \( \newcommand{\Dif}{\mathop{}\!\mathrm{D}}   % roman D in math mode, preceded by space\)
 \( \newcommand{\df}{\dif\hspace{0.05em} f} % df\)

 \(\newcommand{\dBar}{\mathop{}\!\mathrm{d}\hspace-.3em\raise1.05ex{\Rule{.8ex}{.125ex}{0ex}}} % inexact differential \)
 \( \newcommand{\dq}{\dBar q} % heat differential\)
 \( \newcommand{\dw}{\dBar w} % work differential\)
 \( \newcommand{\dQ}{\dBar Q} % infinitesimal charge\)
 \( \newcommand{\dx}{\dif\hspace{0.05em} x} % dx\)
 \( \newcommand{\dt}{\dif\hspace{0.05em} t} % dt\)
 \( \newcommand{\difp}{\dif\hspace{0.05em} p} % dp\)
 \( \newcommand{\Del}{\Delta}\)
 \( \newcommand{\Delsub}[1]{\Delta_{\text{#1}}}\)
 \( \newcommand{\pd}[3]{(\partial #1 / \partial #2 )_{#3}} % \pd{}{}{} - partial derivative, one line\)
 \( \newcommand{\Pd}[3]{\left( \dfrac {\partial #1} {\partial #2}\right)_{#3}} % Pd{}{}{} - Partial derivative, built-up\)
 \( \newcommand{\bpd}[3]{[ \partial #1 / \partial #2 ]_{#3}}\)
 \( \newcommand{\bPd}[3]{\left[ \dfrac {\partial #1} {\partial #2}\right]_{#3}}\)
 \( \newcommand{\dotprod}{\small\bullet}\)
 \( \newcommand{\fug}{f} % fugacity\)
 \( \newcommand{\g}{\gamma} % solute activity coefficient, or gamma in general\)
 \( \newcommand{\G}{\varGamma} % activity coefficient of a reference state (pressure factor)\)
 \( \newcommand{\ecp}{\widetilde{\mu}} % electrochemical or total potential\)
 \( \newcommand{\Eeq}{E\subs{cell, eq}} % equilibrium cell potential\)
 \( \newcommand{\Ej}{E\subs{j}} % liquid junction potential\)
 \( \newcommand{\mue}{\mu\subs{e}} % electron chemical potential\)
\( \newcommand{\defn}{\,\stackrel{\mathrm{def}}{=}\,} % "equal by definition" symbol\)

 \( \newcommand{\D}{\displaystyle} % for a line in built-up\)
 \( \newcommand{\s}{\smash[b]} % use in equations with conditions of validity\)
 \( \newcommand{\cond}[1]{\\[-2.5pt]{}\tag*{#1}}\)
 \( \newcommand{\nextcond}[1]{\\[-5pt]{}\tag*{#1}}\)
 \( \newcommand{\R}{8.3145\units{J$\,$K$\per\,$mol$\per$}}     % gas constant value\)
 \( \newcommand{\Rsix}{8.31447\units{J$\,$K$\per\,$mol$\per$}} % gas constant value - 6 sig figs\)

\( \newcommand{\jn}{\hspace3pt\lower.3ex{\Rule{.6pt}{2ex}{0ex}}\hspace3pt} \)
\( \newcommand{\ljn}{\hspace3pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}} \hspace3pt} \)
\( \newcommand{\lljn}{\hspace3pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}}\hspace1.4pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}}\hspace3pt} \) 

An electrochemical cell is a system in which passage of an electric current through an electrical circuit is linked to an internal cell reaction.  A galvanic cell, or voltaic cell, is an electrochemical cell that, when isolated, has an electric potential difference between its terminals; the cell is said to be a seat of electromotive force.

The cell reaction in a galvanic cell differs in a fundamental way from the same reaction (i.e., one with the same reaction equation) taking place in a reaction vessel that is not part of an electrical circuit.  In the reaction vessel, the reactants and products are in the same phase or in phases in contact with one another, and the reaction advances in the spontaneous direction until reaction equilibrium is reached.  This reaction is the direct reaction.

 The galvanic cell, in contrast, is arranged with the reactants physically separated from one another so that the cell reaction can advance only when an electric current passes through the cell.  If there is no current, the cell reaction is constrained from taking place.  When the electrical circuit is open and the cell is isolated from its surroundings, a state of thermal, mechanical, and transfer equilibrium is rapidly reached.  In this state of cell equilibrium or electrochemical equilibrium, however, reaction equilibrium is not necessarily present—that is, if the reactants and products were moved to a reaction vessel at the same activities, there might be spontaneous advancement of the reaction.

 As will be shown, measurements of the cell potential of a galvanic cell are capable of yielding precise values of molar reaction quantities of the cell reaction and thermodynamic equilibrium constants, and of mean ionic activity coefficients in electrolyte solutions.

Contributors