Skip to main content
Chemistry LibreTexts

19.1: The Acidity of an α- Hydrogen

Alkyl hydrogen atoms bonded to a carbon atom in a a (alpha) position relative to a carbonyl group display unusual acidity. While the pKa values for alkyl C-H bonds is typically on the order of 40-50, pKa values for these alpha hydrogens is more on the order of 19-20. This can most easily be explained by resonance stabilization of the product carbanion, as illustrated in the diagram below.

In the presence of a proton source, the product can either revert back into the starting ketone or aldehyde or can form a new product, the enol. The equilibrium reaction between the ketone or aldehyde and the enol form is commonly referred to as "keto-enol tautomerism". The ketone or aldehyde is generally strongly favored in this reaction.

Because carbonyl groups are sp2 hybridized the carbon and oxygen both have unhybridized p orbitals which can overlap to form the C=O \(\pi\) bond.   


The presence of these overlapping p orbitals gives \(\alpha\) hydrogens (Hydrogens on carbons adjacent to carbonyls) special properties. In particular, \(\alpha\) hydrogens are weakly acidic because the conjugate base, called an enolate, is stabilized though conjugation with the \(\pi\) orbitals of the carbonyl. The effect of the carbonyl is seen when comparing the pKa for the \(\alpha\) hydrogens of aldehydes (~16-18), ketones (~19-21), and esters (~23-25) to the pKa of an alkane (~50).


Of the two resonance structures of the enolate ion the one which places the negative charge on the oxygen is the most stable. This is because the negative change will be better stabilized by the greater electronegativity of the oxygen. 

Keto-enol Tautomerism

Because of the acidity of α hydrogens carbonyls undergo keto-enol tautomerism. Tautomers are rapidly interconverted constitutional isomers, usually distinguished by a different bonding location for a labile hydrogen atom and a differently located double bond. The equilibrium between tautomers is not only rapid under normal conditions, but it often strongly favors one of the isomers (acetone, for example, is 99.999% keto tautomer). Even in such one-sided equilibria, evidence for the presence of the minor tautomer comes from the chemical behavior of the compound. Tautomeric equilibria are catalyzed by traces of acids or bases that are generally present in most chemical samples.



Prof. Steven Farmer (Sonoma State University)

  • Clarke Earley (Department of Chemistry, Kent State University Stark Campus)