Skip to main content
Chemistry LibreTexts

Section 2: Goals

  • Page ID
    75582
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The atomic molecular theory is extremely useful in explaining what it means to form a compound its component elements. That is, a compound consists of identical molecules, each comprised of the atoms of the component elements in a simple whole number ratio. However, the atomic molecular theory also opens up a wide range of new questions. We would like to know what atomic properties determine the number of atoms of each type which combine to form stable compounds. Why are some combinations observed and other combinations not observed? Some elements with very dissimilar atomic masses (for example, iodine and chlorine) form very similar chemical compounds, but other elements with very similar atomic masses (for example, oxygen and nitrogen) form very dissimilar compounds. What factors are responsible for the bonding properties of the elements in a similar group? In general, we need to know what forces hold atoms together in forming a molecule.

    We have developed a detail understanding of the structure of the atom. Our task now is to apply this understanding to develop a similar level of detail about how atoms bond together to form molecules.


    Section 2: Goals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?