Skip to main content
Chemistry LibreTexts

Section 2: Goals

  • Page ID
    75561
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We have concluded that atoms combine in simple ratios to form molecules. However, we don't know what those ratios are. In other words, we have not yet determined any molecular formulae. In the second table of Concept Development Study #1, we found that the mass ratios for nitrogen oxide compounds were consistent with many different molecular formulae. A glance back at the nitrogen oxide data shows that the oxide B could be NO, NO2, N2O

    , or any other simple ratio.

    Each of these formulae correspond to different possible relative atomic weights for nitrogen and oxygen. Since oxide B has oxygen to nitrogen ratio 1.14 : 1, then the relative masses of oxygen to nitrogen could be 1.14:1 or 2.28:1 or 0.57:1 or many other simple possibilities. If we knew the relative masses of oxygen and nitrogen atoms, we could determine the molecular formula of oxide B. On the other hand, if we knew the molecular formula of oxide B, we could determine the relative masses of oxygen and nitrogen atoms. If we solve one problem, we solve both. Our problem then is that we need a simple way to "count" atoms, at least in relative numbers.


    Section 2: Goals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?