Skip to main content
Chemistry LibreTexts

8.23: Addition Polymers

  • Page ID
    49486
  • [ "article:topic", "ChemPrime", "addition polymer", "authorname:chemprime", "showtoc:no" ]

    Addition polymers are usually made from a monomer containing a double bond. We can think of the double bond as "opening out" in order to participate in two new single bonds in the following way:

    Thus, if ethene is heated at moderate temperature and pressure in the presence of an appropriate catalyst, it polymerizes:

    Table \(\PageIndex{1}\): Some Common Addition Polymers.
    Monomer Nonsystematic Name Polymer Some Typical Uses
    Ethylene Polyethylene Film for packaging and bags, toys, bottles, coatings
    Propylene Polypropylene Milk cartons, rope, outdoor carpeting
    Styrene Polystyrene Transparent containers, plastic glasses, refrigerators, styrofoam
    Vinyl chloride Polyvinyl chloride, PVC Pipe and tubing, raincoats, curtains, phonograph records, luggage, floor tiles
    Acrylonitrile Polyacrylonitrile (Orlon, Acrilan) Textiles, ruga
    Tetrafluoroethylene Teflon Nonstick pan coatings, bearings, gaskets

    The result is the familiar waxy plastic called polyethylene, which at a molecular level consists of a collection of long-chain alkane molecules, most of which contain tens of thousands of carbon atoms. There is only an occasional short branch chain.

    Polyethylene is currently manufactured on a very large scale, larger than any other polymer, and is used for making plastic bags, cheap bottles, toys, etc. Many of its properties are what we would expect from its molecular composition. The fact that it is a mixture of molecules each of slightly different chain length (and hence slightly different melting point) explains why it softens over a range of temperatures rather than having a single melting point. Because the molecules are only held together by London forces, this melting and softening occurs at a rather low temperature. (Some of the cheaper varieties of polyethylene with shorter chains and more branch chains will even soften in boiling water.) The same weak London forces explain why polyethylene is soft and easy to scratch and why it is not very ‘strong mechanically.'

    The table above lists some other well-known addition polymers and also some of their uses. You can probably find at least one example of each of them in your home. Except for Teflon, all these polymers derive from a monomer of the form

    The resulting polymer thus has the general form


    By varying the nature of the R group, the physical properties of the polymer can be controlled rather precisely.

    Contributors