Skip to main content
Chemistry LibreTexts

5.5: Partition Functions can be Decomposed

  • Page ID
    164830
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    From the previous sections, the partition function for a system of \(N\) indistinguishable and independent molecules is:

    \[ Q(N,V,\beta) = \dfrac{\sum_i{e^{-\beta E_i}}}{N!} \label{ID1} \]

    And the average energy of the system is:

    \[ \langle E \rangle = kT^2 \left(\dfrac{\partial \ln{Q}}{\partial T}\right) \label{ID2} \]

    We can combine these two equations to obtain:

    \[ \begin{split} \langle E \rangle &= kT^2 \left(\dfrac{\partial \ln{Q}}{\partial T}\right)_{N,V} \\ &= NkT^2 \left(\dfrac{\partial \ln{q}}{\partial T}\right)_V \\ &= N\sum_i{\epsilon_i \dfrac{e^{-\epsilon_i/kT}}{q(V,T)}} \end{split} \label{ID3} \]

    The average energy is equal to:

    \[ \langle E \rangle = N \langle \epsilon \rangle \label{aveE} \]

    where \(\langle \epsilon \rangle\) is the average energy of a single particle. If we compare Equation \(\ref{ID2}\) with Equation \(\ref{ID2}\), we can see:

    \[ \langle \epsilon \rangle = \sum_i{\epsilon_i \dfrac{e^{-\epsilon_i/kT}}{q(V,T)}} \nonumber \]

    The probability that a particle is in state \(i\), \(\pi_i\), is given by:

    \[ \langle \epsilon \rangle = \dfrac{e^{-\epsilon_i/kT}}{q(V,T)} = \dfrac{e^{-\epsilon_i/kT}}{\sum_i{e^{-\epsilon_i/kT}}} \nonumber \]

    The energy of a particle is a sum of the energy of each degree of freedom for that particle. In the case of a molecule, the energy is:

    \[ \epsilon = \epsilon_\text{trans} + \epsilon_\text{rot} + \epsilon_\text{vib} + \epsilon_\text{elec} \nonumber \]

    The molecular partition function is the product of the degree of freedom partition functions:

    \[ q(V,T) = q_\text{trans} q_\text{rot} q_\text{vib} q_\text{elec} \nonumber \]

    The partition function for each degree of freedom follows the same is related to the Boltzmann distribution. For example, the vibrational partition function is:

    \[ q_\text{vib} = \sum_i{e^{-\epsilon_i/kT}} \nonumber \]

    The average energy of each degree of freedom follows the same pattern as before. For example, the average vibrational energy is:

    \[ \langle \epsilon_\text{vib} \rangle = kT^2\dfrac{\partial \ln{q_\text{vib}}}{\partial t} = -\dfrac{\partial \ln{q_\text{vib}}}{\partial \beta} \nonumber \]


    5.5: Partition Functions can be Decomposed is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?