Skip to main content
Chemistry LibreTexts

9.4: The Enthalpy of an Ideal Gas

  • Page ID
    202928
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    How does pressure affect enthalpy \(H\)? As we showed above we have the following relations of first and second order for \(G\)

    \[\left( \dfrac{\partial G}{\partial T} \right)_P = -S \nonumber \]

    \[ \left( \dfrac{\partial G}{\partial P} \right)_T = -V \nonumber \]

    \[ -\left (\dfrac{\partial S}{\partial P }\right)_T = \left (\dfrac{\partial V}{\partial T} \right)_P \nonumber \]

    We also know that by definition:

    \[G = H - TS \label{def} \]

    Consider an isothermal change in pressure, so taking the partial derivative of each side of Equation \(\ref{def}\), we get:

    \[ \left( \dfrac{\partial G}{\partial P}\right)_T = \left( \dfrac{\partial H}{ \partial P}\right)_T -T \left( \dfrac{\partial S}{\partial P}\right)_T \nonumber \]

    \[ \left( \dfrac{\partial H}{\partial P}\right)_T = V -T \left( \dfrac{\partial V}{\partial T}\right)_P \label{Eq12} \]

    For an ideal gas

    \[\dfrac{\partial V}{\partial T} = \dfrac{nR}{P} \nonumber \]

    so Equation \(\ref{Eq12}\) becomes

    \[ \left( \dfrac{\partial H}{\partial P}\right)_T = V - T \left( \dfrac{nR}{P}\right) = 0 \nonumber \]

    As we can see for an ideal gas, there is no dependence of \(H\) on \(P\).


    9.4: The Enthalpy of an Ideal Gas is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?