# 9.4: The Enthalpy of an Ideal Gas

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

How does pressure affect enthalpy $$H$$? As we showed above we have the following relations of first and second order for $$G$$

$\left( \dfrac{\partial G}{\partial T} \right)_P = -S \nonumber$

$\left( \dfrac{\partial G}{\partial P} \right)_T = -V \nonumber$

$-\left (\dfrac{\partial S}{\partial P }\right)_T = \left (\dfrac{\partial V}{\partial T} \right)_P \nonumber$

We also know that by definition:

$G = H - TS \label{def}$

Consider an isothermal change in pressure, so taking the partial derivative of each side of Equation $$\ref{def}$$, we get:

$\left( \dfrac{\partial G}{\partial P}\right)_T = \left( \dfrac{\partial H}{ \partial P}\right)_T -T \left( \dfrac{\partial S}{\partial P}\right)_T \nonumber$

$\left( \dfrac{\partial H}{\partial P}\right)_T = V -T \left( \dfrac{\partial V}{\partial T}\right)_P \label{Eq12}$

For an ideal gas

$\dfrac{\partial V}{\partial T} = \dfrac{nR}{P} \nonumber$

so Equation $$\ref{Eq12}$$ becomes

$\left( \dfrac{\partial H}{\partial P}\right)_T = V - T \left( \dfrac{nR}{P}\right) = 0 \nonumber$

As we can see for an ideal gas, there is no dependence of $$H$$ on $$P$$.

9.4: The Enthalpy of an Ideal Gas is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.