Skip to main content
Chemistry LibreTexts

3.8: Buffer Solutions

  • Page ID
    227026
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A buffer is a solution that can resist pH change upon the addition of an acidic or basic components. It is able to neutralize small amounts of added acid or base, thus maintaining the pH of the solution relatively stable. This is important for processes and/or reactions which require specific and stable pH ranges. Buffer solutions have a working pH range and capacity which dictate how much acid/base can be neutralized before pH changes, and the amount by which it will change.

    • Blood as a Buffer
      Buffer solutions are extremely important in biology and medicine because most biological reactions and enzymes need very specific pH ranges in order to work properly.
    • Henderson-Hasselbalch Approximation
      The Henderson-Hasselbalch approximation allows us one method to approximate the pH of a buffer solution.
    • How Does A Buffer Maintain pH?
      A buffer is a special solution that stops massive changes in pH levels. Every buffer that is made has a certain buffer capacity, and buffer range. The buffer capacity is the amount of acid or base that can be added before the pH begins to change significantly. It can be also defined as the quantity of strong acid or base that must be added to change the pH of one liter of solution by one pH unit.
    • Introduction to Buffers
      A buffer is a solution that can resist pH change upon the addition of an acidic or basic components. It is able to neutralize small amounts of added acid or base, thus maintaining the pH of the solution relatively stable. This is important for processes and/or reactions which require specific and stable pH ranges. Buffer solutions have a working pH range and capacity which dictate how much acid/base can be neutralized before pH changes, and the amount by which it will change.
    • Preparing Buffer Solutions
      When it comes to buffer solution one of the most common equation is the Henderson-Hasselbalch approximation. An important point that must be made about this equation is it's useful only if stoichiometric or initial concentration can be substituted into the equation for equilibrium concentrations.

    Thumbnail: Simulated titration of an acidified solution of a weak acid (pKa = 4.7) with alkali. (Public Domain; Lasse Havelund).


    3.8: Buffer Solutions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?