Skip to main content
Chemistry LibreTexts

4.8: The simple example revisited

  • Page ID
    20889
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Consider, again, the example of adding to spin-1/2 angular momenta. This time, we will use the Clebsch-Gordan coefficients directly to determine the unitary transformation. Start with the state \(\vert 1\;\;1\rangle\). Expanding gives

    \begin{displaymath}
\vert 1\;\;1\rangle = \sum_{m_1=-1/2}^{1/2}\sum_{m_2=-1/2}^{...
...over 2}\;\;\;m_1;{1 \over 2}\;\;\;m_2\right\vert}1\;\;1\rangle
\end{displaymath}

    Only one term gives \(m_1+m_2=1\), which is clearly \(m_1=1/2\) and \(m_2=1/2\). Thus,

    \begin{displaymath}
\vert 1\;\;1\rangle = {\left\vert{1 \over 2}\;\;\;{1 \over 2...
...\over 2};{1 \over 2}\;\;\;{1 \over 2}\right\vert}1\;\;1\rangle
\end{displaymath}

    The Clebsch-Gordan coefficients, by special case \(i\) is just 1, so

    \begin{displaymath}
\vert 1\;\;1\rangle = {\left\vert{1 \over 2}\;\;\;{1 \over 2};{1 \over 2}\;\;\;{1 \over 2}\right>}
\end{displaymath}

    as expected.

    The state \(\vert 1\;\;0\rangle\) is expanded as

    \begin{displaymath}
\vert 1\;\;0\rangle = \sum_{m_1=-1/2}^{1/2}\sum_{m_2=-1/2}^{...
...over 2}\;\;\;m_1;{1 \over 2}\;\;\;m_2\right\vert}1\;\;0\rangle
\end{displaymath}

    This time, since \(m_1+m_2=0\), two terms contribute, \(m_1=1/2, m_2=-1/2\) and \(m_1=-1/2, m_2=1/2\). Hence,

    \begin{displaymath}
\vert 1\;\;0\rangle = {\left\vert{1 \over 2}\;\;\;{1 \over 2...
...\over 2};{1 \over 2}\;\;\;{1 \over 2}\right\vert}1\;\;0\rangle
\end{displaymath}

    However, since \(j_1+j_2=1\), we can use special case \(iii\), and we find

    \(\displaystyle {\left<{1 \over 2}\;\;\;{1 \over 2};{1 \over 2}\;\;\;-{1 \over 2}\right\vert}1\;\;0\rangle\) \(\textstyle =\) \(\displaystyle \sqrt
    ParseError: EOF expected (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/4:_Molecular_Quantum_Mechanics/4.8:_The_simple_example_revisited), /content/body/div[6]/table/tbody/tr[1]/td[3]/span[1], line 1, column 2
    
    \sqrt
    ParseError: EOF expected (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/4:_Molecular_Quantum_Mechanics/4.8:_The_simple_example_revisited), /content/body/div[6]/table/tbody/tr[1]/td[3]/span[2], line 1, column 2
    
    = {1 \over \sqrt{2}}\)
    \(\displaystyle {\left<{1 \over 2}\;\;\;-{1 \over 2};{1 \over 2}\;\;\;{1 \over 2}\right\vert}1\;\;0\rangle\) \(\textstyle =\) \(\displaystyle \sqrt
    ParseError: EOF expected (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/4:_Molecular_Quantum_Mechanics/4.8:_The_simple_example_revisited), /content/body/div[6]/table/tbody/tr[2]/td[3]/span[1], line 1, column 2
    
    \sqrt
    ParseError: EOF expected (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/4:_Molecular_Quantum_Mechanics/4.8:_The_simple_example_revisited), /content/body/div[6]/table/tbody/tr[2]/td[3]/span[2], line 1, column 2
    
    = {1 \over \sqrt{2}}\)

    so that

    \begin{displaymath}
\vert 1\;\;0\rangle = {1 \over \sqrt{2}}\left({\left\vert{1 ...
...\;\;\;-{1 \over 2};{1 \over 2}\;\;\;{1 \over 2}\right>}\right)
\end{displaymath}

    It is straightforward to show that \(\vert 1\;\;-1\rangle = {\left\vert{1 \over 2}\;\;\;-{1 \over 2};{1 \over 2}\;\;\;-{1 \over 2}\right>}\). The state \(\vert\;\;0\rangle\) is expanded to give

    \begin{displaymath}
\vert\;\;0\rangle = \sum_{m_1=-1/2}^{1/2}\sum_{m_2=-1/2}^{1/...
...over 2}\;\;\;m_1;{1 \over 2}\;\;\;m_2\right\vert}0\;\;0\rangle
\end{displaymath}

    Again there are two terms that contribute. However, to determine the two Clebsch-Gordan coefficients:

    \begin{displaymath}
{\left<{1 \over 2}\;\;\;{1 \over 2};{1 \over 2}\;\;\;-{1 \ov...
...\over 2};{1 \over 2}\;\;\;{1 \over 2}\right\vert}0\;\;0\rangle
\end{displaymath}

    we can use special case \(ii\), since \(M=J\). In this case,

    \(\displaystyle {\left<{1 \over 2}\;\;\;{1 \over 2};{1 \over 2}\;\;\;-{1 \over 2}\right\vert}0\;\;0\rangle\) \(\textstyle =\) $\displaystyle (-1)^{{1 \over 2}-{1 \over 2}}
\sqrt{{1! 1! \over 2! 0! 0!}}\sqrt{{1! 0! \over 0! 1!}} = {1 \over \sqrt{2}}$
    \(\displaystyle {\left<{1 \over 2}\;\;\;-{1 \over 2};{1 \over 2}\;\;\;{1 \over 2}\right\vert}0\;\;0\rangle\) \(\textstyle =\) $\displaystyle (-1)^{{1 \over 2}+{1 \over 2}}
\sqrt{{1! 1! \over 2! 0! 0!}}\sqrt{{0! 1! \over 1! 0!}} = -{1 \over \sqrt{2}}$

    Hence, the state is given by

    \begin{displaymath}
\vert\;\;0\rangle = {1 \over \sqrt{2}}\left({\left\vert{1 \o...
...\;\;\;-{1 \over 2};{1 \over 2}\;\;\;{1 \over 2}\right>}\right)
\end{displaymath}

    This page titled 4.8: The simple example revisited is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?