Skip to main content
Chemistry LibreTexts

16: Chemistry of Benzene - Electrophilic Aromatic Substitution

  • Page ID
    162180
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In the preceding chapter, you studied the concept of aromaticity and spent considerable time on the theoretical aspects of the chemistry of aromatic compounds. In this chapter, you will begin to study the chemical reactions of aromatic compounds, focusing in particular on electrophilic aromatic substitution, and to a lesser extent on nucleophilic aromatic substitution. We will discuss, in detail, the mechanism of electrophilic substitution, paying particular attention to the factors that determine both the rate and position of substitution in those aromatic compounds which already have one or more substituents present in the aromatic ring. When we discuss nucleophilic aromatic substitution, you will see that it can be achieved by two different mechanisms, one of which involves the formation of an unusual looking intermediate, benzyne.

    You will also see how alkyl and acyl groups can be introduced on to an aromatic ring; how, once introduced, alkyl groups can be converted to carboxyl groups; and how bromine can be introduced to the alkyl side chain of alkylbenzene. The latter reaction is particularly useful because the benzylic bromide so produced undergoes the reactions of a typical alkyl bromide, thus providing us with a synthetic route to a large variety of compounds.


      16: Chemistry of Benzene - Electrophilic Aromatic Substitution is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

      • Was this article helpful?