Skip to main content
Chemistry LibreTexts

6.P: Determination of Kc for a Complex Ion Formation (Pre-Lab)

  • Page ID
    127156
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A student mixes 5.0 mL of 0.00200 M \(\ce{Fe(NO3)3}\) with 5.0 mL 0.00200 M \(\ce{KSCN}\). She finds that the concentration of \(\ce{FeSCN^{2+}}\) in the equilibrium mixture is 0.000125 M. Follow these steps to determine the corresponding experimental value of \(K_{c}\) for the reaction of \(\ce{Fe^{3+}}\) and \(\ce{SCN^{-}}\) to produce this complex ion. Show your calculations for each step below and then place the appropriate value(s) in the equilibrium (or 'ICE') table near the bottom of the page.

    • Step 1. Calculate the molarity of \(\ce{Fe^{3+}}\), \(\ce{SCN^{-}}\), and \(\ce{FeSCN^{2+}}\) initially present after mixing the two solutions, but prior to any reaction taking place. (\(M_{1}V_{1} = M_{2}V_{2}\))
    • Step 2. Determine the expression and initial value for \(Q_{c}\). Then give the appropriate signs of the concentration changes for each species in terms of the reaction's shift, or \(x\), into the 'ICE' table.
    • Step 3. Fill in the equilibrium value for the molarity of \(\ce{FeSCN^{2+}}\). From this, you can determine the value of \(x\).
    • Step 4. Given the value of \(x\), determine the equilibrium molarities of \(\ce{Fe^{3+}}\) and \(\ce{SCN^{-}}\).
    'ICE' Table
    \(\ce{Fe^{3+}}\) (aq) \(+ \quad \ce{SCN^{-} (aq)}\) \(\ce{ <=>\quad FeSCN^{2+} (aq)}\)
    I
    C
    E
    • Step 5. Give the correct expression for \(K_{c}\) for this equation. Then calculate the value of \(K_{c}\) for the reaction from the equilibrium concentrations. Use correct significant figures.
    • Step 6. On the reverse side, complete an 'ICE' table using this same procedure, but using a different reaction stoichiometry: \(\ce{Fe^{3+} + 2 SCN^{-} <=> Fe(SCN)2^{2+}}\) (ignore that fact that this is incorrect since the reaction is not balanced with respect to charge). Assume that the equilibrium concentration of \(\ce{FeSCN^{2+}}\) is 0.0000625 M, or one-half its previous value. Remember how the reaction stoichiometry affects the expression for \(K_{c}\).

    This page titled 6.P: Determination of Kc for a Complex Ion Formation (Pre-Lab) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Santa Monica College.