q1402 drafts
- Page ID
- 316420
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1-1 Algebra
Exercise \(\PageIndex{3}\)
\(P V=n R T\)
Solve the equation above for:
- P
- V
- n
- T
- Answer a
-
\[\begin{aligned}
&P V=n R T\\
&\text { Step 1: Divide both sides by V: }\\
&P\left(\frac{V}{V}\right)=\frac{n R T}{V}\\
&\text { Note: }\left(\frac{\mathrm{V}}{\mathrm{V}}\right)=1\\
&P=\frac{n R T}{V}
\end{aligned}\nonumber\] - Answer b
-
\[\begin{aligned}
&P V=n R T\\
&\text { Step 1: Divide both sides by P: }\\
&V\left(\frac{P}{P}\right)=\frac{n R T}{P}\\
&\text { Note: }\left(\frac{\mathrm{P}}{\mathrm{P}}\right)=1\\
&V=\frac{n R T}{P}
\end{aligned}\nonumber\] - Answer c
-
\[\begin{aligned}
&P V=n R T\\
&\text { Step 1: Divide both sides by RT: }\\
&\frac{PV}{RT}=n\left(\frac{RT}{RT}\right)\\
&\text { Note: }\left(\frac{\mathrm{RT}}{\mathrm{RT}}\right)=1\\
&n=\frac{PV}{RT}
\end{aligned}\nonumber\]
- Answer d
-
\[\begin{aligned}
&P V=n R T\\
&\text { Step 1: Divide both sides by nR: }\\
&\frac{PV}{nR}=\left(\frac{nR}{nR}\right)T\\
&\text { Note: }\left(\frac{\mathrm{nR}}{\mathrm{nR}}\right)=1\\
&T=\frac{PV}{nR}
\end{aligned}\nonumber\]
Exercise \(\PageIndex{4}\)
\(T_{F}=T_{C}\left(\frac{9}{5}\right)+32\)
Solve the equation above for Tc:
- Answer
-
\(T_{F}=T_{C}\left(\frac{9}{5}\right)+32\)
Step 1: Bring all things with TC to one side of the eq. and everything else to the other by subtracting 32 from sides and rearranging (note 32-32=0 )
\(T_{C}\left(\frac{9}{5}\right)=T_{F}-32\)
Step 2. multiply both sides by \(\frac{5}{9}\) noting:
\(\left(\frac{9}{5}\right)\left(\frac{5}{9}\right)=\left(\frac{9}{9}\right)\left(\frac{5}{5}\right)=(1)(1)=1\)
\(T_{C}=\left(T_{F}-32\right)\left(\frac{5}{9}\right)\)
Exercise \(\PageIndex{5}\)
\(q=mc(T_{F}-T_{i})\)
Solve the equation above for TF:
- Answer
-
Separate Tf from all other variables by dividing both sides by mc and adding Ti to both sides
\[\begin{align} q&=mc(T_{f}-T_{i})\nonumber\\
\frac{q}{mc}&=\frac{mc}{mc}(T_{f}-T_{i})\nonumber\\
\frac{q}{mc}+T_{i}&=T_{f}-T_{i}+T_{i}=T_{f}\nonumber\\
T_{f}&=T_{i}+\frac{q}{mc} \nonumber\end{align} \]
Exercise \(\PageIndex{6}\)
Solve the following equation for:
\[ m_Cc_C \Delta T _C =- m_Hc_H \Delta T_H \nonumber\]
- cH
- cc
- Tc
- TF
- Answer a
-
\[\begin{aligned}
\text { Divide both sides by } m_{H}\left(T_{F}-T_{H}\right)\\
\frac{m_{c} c_{c}\left(T_{F}-T_{C}\right)}{-m_{H}\left(T_{F}-T_{H}\right)}&=c_{H}\left(\frac{m_{H}\left(T_{F}-T_{H}\right)}{m_{H}\left(T_{F}-T_{H}\right)}\right)\\
c_{H}&=\frac{-m_{C} c_{C}\left(T_{F}-T_{C}\right)}{m_{H}\left(T_{F}-T_{H}\right)}
\end{aligned}\]
- Answer b
-
\[\begin{aligned}
\text { Divide both sides by } m_{C}\left(T_{F}-T_{C}\right)\\
c_{C}\left(\frac{m_{C}\left(T_{F}-T_{C}\right)}{m_{C}\left(T_{F}-T_{C}\right)}\right)&=\frac{-m_{H} c_{H}\left(T_{F}-T_{H}\right)}{m_{C}\left(T_{F}-T_{C}\right)}\\
c_{C}&=\frac{-m_{H} c_{H}\left(T_{F}-T_{H}\right)}{m_{C}\left(T_{F}-T_{C}\right)}
\end{aligned}\]
- Answer c
-
Step 1: Place all terms with TC on one side of the equal sign and everything else on the other side
\[\begin{aligned}
m_{C} c_{C}\left(T_{F}-T_{C}\right)&=-m_{H}c_{H}\left(T_{F}-T_{H}\right)\\
m_{C} c_{C}T_{F}-m_{C} c_{C}T_{C}&=-m_{H}c_{H}(T_{F}-T_{H})\\
-m_{C} c_{C}T_{C}&=m_{C} c_{C}T_{F}-m_{H}c_{H}(T_{F}-T_{H})
\end{aligned}\nonumber\]Step 2: Solve for TC by dividing both sides by \(-m_{C} c_{c}\)
\[\begin{aligned}
\frac{-m_{C} c_{C}T_{C}}{-m_{C} c_{C}}&=\frac{m_{C} c_{C}T_{F}-m_{H}c_{H}(T_{F}-T_{H})}{-m_{C} c_{C}}\\
T_{C}&=T_{F}+\frac{m_{H}c_{H}(T_{F}-T_{H})}{m_{C} c_{C}}
\end{aligned}\nonumber\]
- Answer d
-
Step 1: Place all terms with TF on one side of the equal sign and everything else on the other side
\[\begin{aligned}
m_{C} c_{C}\left(T_{F}-T_{C}\right)&=-m_{H}c_{H}\left(T_{F}-T_{H}\right)\\
m_{C} c_{C}T_{F}-m_{C} c_{C}T_{C}&=-m_{H} c_{H}T_{F}-m_{H} c_{H}T_{H}\\
m_{C} c_{C}T_{F}+m_{H} c_{H}T_{F}&=m_{C} c_{C}T_{C}+m_{H} c_{H}T_{H}\\
T_{F}(m_{C} c_{C}+m_{H} c_{H})&=m_{C} c_{C}T_{C}+m_{H} c_{H}T_{H}\\
\end{aligned}\nonumber\]Step 2: Solve for TC by dividing both sides by \(m_{C} c_{C}+m_{H} c_{H}\)
\[T_{F}=\frac{m_{C} c_{C}T_{C}+m_{H} c_{H}T_{H}}{(m_{C} c_{C}+m_{H} c_{H})}\nonumber\]
1-2-Math
Exercise \(\PageIndex{1}\)
Consider all of the following values to be measured numbers. Review your rules on significant figures and be sure you can do these without a calculator.
- 12.56 + 2.4
- 98.3-89.4
- 82.0 + 34.4
- 312.56 X 2.4
- Answer a
-
15.0
Review the Rules for Addition and Subtraction:
The exact answer is 14.96 but 2.4 is only known to the 10ths position, so you truncate the answer there. You round up because the 6 (in the 100ths position) is greater than or equal to 5.
- Answer b
-
8.9
Review the Rules for Addition and Subtraction:
Although both numbers have 3 significant figures the answer has 2 because they are only known to the 10th position.
- Answer c
-
116.4
Review the Rules for Addition and Subtraction:
Although both numbers are known to 3 significant figures the answer has 4 because they are all known to the 10th position.
- Answer d
-
30
Review the Rules for Division and Multiplication:
The answer will have the number of significant digits as the number with the least.
Exercise \(\PageIndex{2}\)
Consider all of the following values to be measured numbers. Review your rules on significant figures and be sure you can do these without a calculator.
Solve the following to the correct number of significant figures:
- \(\frac{198.1}{12.1+198.1}\)
- \(\frac{12.1}{12.1+198.1}\)
- \(\frac{4.12}{384}\)
- 3\(412-0.4\)
- Answer a
-
0.9424
Note the denominator has 4 not 3 sig figs
\(\frac{198.1}{12.1+198.1}=\frac{198.1\text{(4 sig figs)}}{ 210.2 \text{(4 sig figs)}}=0.9424\) final answer has four sig figs
- Answer b
-
0.0576
\(\frac{12.1}{12.1+198.1}=\frac{12.1\text{(3 sig figs)}}{ 210.2 \text{(4 sig figs)}}=0.0576\) final answer has three sig figs
- Answer c
-
0.0107
- Answer d
- 412
1-3 Significant Figures
Exercise \(\PageIndex{1}\)
Give the number of significant figures in each measured value.
- 0.00204 g
- 20400 g
- 0.0020400 kg
- 20103 mL
- 100 students
- 0.00001 miles
- 2.00x104
- Answer a
- 3 sig figs
- Answer b
- 3 sig figs
- Answer c
- 5 sig figs
- Answer d
- 5 sig figs
- Answer e
- 3 sig figs
- Answer f
- 1 sig figs
- Answer g
- 3 sig figs
1-4 Scientific Notation
Exercise \(\PageIndex{1}\)
Convert the following numbers to scientific notation
- 234.00
- 0.000100
- 23470.23
- 0.0374600
- Answer a
- 2.3400x102
- Answer b
- 1.00 x 10-4
- Answer c
- 2.347034 x 104
- Answer d
- 3.74600 x 10-2
Exercise \(\PageIndex{2}\)
Express 200 to 2 significant figures
- Answer a
- 2.0 x 102
1-5 Math
Exercise \(\PageIndex{1}\)
Solve the following:
- (44.5 + 12.1) X (116 - 104)
- (32.4 - 41) X (4.867 + 2.295)
- (0.086 + 0.034) X (1.283 + 0.137)
- (2 X 102) X (4 X 103)
- 3.18 X 10-3 + 4.6 X 10-4
- 8.4 X 10-8 + 3.2x10-3
- \(\frac{(6.0221367\times 10^{23})(6.62608\times 10^{-34})}{(2.99792458\times 10^{8})(9.6485309\times 10^{4})}\)
- Answer a
- 680
Note that (116-104) = 12 and has two significant figures
- Answer b
-
-60
Note (32.4-41) has one significant figure (but use -8.6 in the calculation).
- Answer c
- 0.170
Note (0.086 + 0.034) has 3 significant figures
- Answer d
- 8 X 105
Note if you get 8 X 106 you are not correctly using your calculator
- Answer e
- 3.64 X 10-3
In order to determine the relative precision of each number, you need to bring them to the same power of 10
\[\begin{align} \nonumber & 3.18\times 10^{-3} \nonumber \\ + \nonumber &0.46\times 10^{-3} \nonumber \\ \hline \nonumber &3.64\times 10^{-3}\nonumber \end{align} \]
- Answer f
- 3.64 X 10-3
Note, the first number is of the order of 105 smaller than the second and therefor insignificant.
- Answer g
- 1.3795x10-23
\[\frac{(6.0221367\times 10^{23})(6.62608\times 10^{-34})}{(2.99792458\times 10^{8})(9.6485309\times 10^{4})}\nonumber\\\\
=\frac{(6.0221367)(6.62608)}{(2.99792458)(9.6485309)}\times\frac{(10^{23})(10^{-34})}{(10^{8})( 10^{4})}\nonumber\\\\
=1.3795\times10^{32-34-8-4}\nonumber\]
1-6 Percent
Exercise \(\PageIndex{1}\)
You have a solution made by mixing 41.48 g salt with 972 g water
a. What is the mass percent water?
b. What is the mass percent salt?
- Answer a
- \(\frac{972g}{(972g+41.48g)}(100)=\frac{972g}{(1013.48g)}(100)=95.9\%\)
Note that although the denominator has 4 significant figures, you use them all in the calculation.
- Answer b
-
\(\frac{972g}{(972g+41.48g)}(100)=\frac{972g}{(1013.48g)}(100)=4.093\%\)
Note that although the denominator has 4 significant figures, you use them all in the calculation.
Exercise \(\PageIndex{2}\)
An ore sample is 1.67% gold. How much pure gold is in 23.4 g of the ore?
- Answer
- \[\begin{align}
\%&=\frac{Part}{Whole}(100)=\frac{P}{W}(100)\nonumber\\
P&=\%\frac{W}{100}=1.67\frac{23.4g}{100}=0.39078g\nonumber
\end{align}\nonumber\]g Au in the ore is 0.391g
Note that the 100 in the percent is an exact number and does not influence the significant figures in the final answer.
Exercise \(\PageIndex{3}\)
Modern copper deposits tend to be low grade sulfide ores. What quantity of 0.874% copper ore is required to produce 1.00 lb of copper?
- Answer
- \[\begin{align}
\%&=\frac{Part}{Whole}(100)=\frac{P}{W}(100)\nonumber\\
W&=\frac{P}{\%}(100)\nonumber\\
W&=\frac{1}{0.874}(100)=114lb\nonumber
\end{align}\nonumber\]
Exercise \(\PageIndex{4}\)
What mass of sulfur is released upon combustion of 50.0 lbs of low grade coal containing 12.4% sulfur?
- Answer
- \[\begin{align}
\%&=\frac{Part}{Whole}(100)=\frac{P}{W}(100)\nonumber\\
P&=\frac{\%W}{100}\nonumber\\
P&=\frac{(12.4)(50.0)}{100}=6.20lb\nonumber
\end{align}\nonumber\]