Skip to main content
Chemistry LibreTexts

q1402 drafts

  • Page ID
    316420
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1-1 Algebra

    Exercise \(\PageIndex{3}\)

    \(P V=n R T\)

    Solve the equation above for:

    1. P
    2. V
    3. n
    4. T
    Answer a

    \[\begin{aligned}
    &P V=n R T\\
    &\text { Step 1: Divide both sides by V: }\\
    &P\left(\frac{V}{V}\right)=\frac{n R T}{V}\\
    &\text { Note: }\left(\frac{\mathrm{V}}{\mathrm{V}}\right)=1\\
    &P=\frac{n R T}{V}
    \end{aligned}\nonumber\]

     
    Answer b

    \[\begin{aligned}
    &P V=n R T\\
    &\text { Step 1: Divide both sides by P: }\\
    &V\left(\frac{P}{P}\right)=\frac{n R T}{P}\\
    &\text { Note: }\left(\frac{\mathrm{P}}{\mathrm{P}}\right)=1\\
    &V=\frac{n R T}{P}
    \end{aligned}\nonumber\]

     
    Answer c

    \[\begin{aligned}
    &P V=n R T\\
    &\text { Step 1: Divide both sides by RT: }\\
    &\frac{PV}{RT}=n\left(\frac{RT}{RT}\right)\\
    &\text { Note: }\left(\frac{\mathrm{RT}}{\mathrm{RT}}\right)=1\\
    &n=\frac{PV}{RT}
    \end{aligned}\nonumber\]

    Answer d

    \[\begin{aligned}
    &P V=n R T\\
    &\text { Step 1: Divide both sides by nR: }\\
    &\frac{PV}{nR}=\left(\frac{nR}{nR}\right)T\\
    &\text { Note: }\left(\frac{\mathrm{nR}}{\mathrm{nR}}\right)=1\\
    &T=\frac{PV}{nR}
    \end{aligned}\nonumber\]

     

    Exercise \(\PageIndex{4}\)

    \(T_{F}=T_{C}\left(\frac{9}{5}\right)+32\)

    Solve the equation above for Tc:

    Answer

    \(T_{F}=T_{C}\left(\frac{9}{5}\right)+32\)

    Step 1: Bring all things with TC to one side of the eq. and everything else to the other by subtracting 32 from sides and rearranging (note 32-32=0 )

    \(T_{C}\left(\frac{9}{5}\right)=T_{F}-32\)

    Step 2. multiply both sides by \(\frac{5}{9}\) noting:

    \(\left(\frac{9}{5}\right)\left(\frac{5}{9}\right)=\left(\frac{9}{9}\right)\left(\frac{5}{5}\right)=(1)(1)=1\)

    \(T_{C}=\left(T_{F}-32\right)\left(\frac{5}{9}\right)\)

     

     

    Exercise \(\PageIndex{5}\)

    \(q=mc(T_{F}-T_{i})\)

    Solve the equation above for TF:

    Answer

    Separate Tf from all other variables by dividing both sides by mc and adding Ti to both sides

    \[\begin{align} q&=mc(T_{f}-T_{i})\nonumber\\
    \frac{q}{mc}&=\frac{mc}{mc}(T_{f}-T_{i})\nonumber\\
    \frac{q}{mc}+T_{i}&=T_{f}-T_{i}+T_{i}=T_{f}\nonumber\\
    T_{f}&=T_{i}+\frac{q}{mc} \nonumber\end{align} \]

     

     

    Exercise \(\PageIndex{6}\)

    Solve the following equation for:
     \[ m_Cc_C \Delta T _C =- m_Hc_H \Delta T_H  \nonumber\]

    1. cH
    2. cc
    3. Tc
    4. TF
    Answer a

    \[\begin{aligned}
    \text { Divide both sides by } m_{H}\left(T_{F}-T_{H}\right)\\
    \frac{m_{c} c_{c}\left(T_{F}-T_{C}\right)}{-m_{H}\left(T_{F}-T_{H}\right)}&=c_{H}\left(\frac{m_{H}\left(T_{F}-T_{H}\right)}{m_{H}\left(T_{F}-T_{H}\right)}\right)\\
    c_{H}&=\frac{-m_{C} c_{C}\left(T_{F}-T_{C}\right)}{m_{H}\left(T_{F}-T_{H}\right)}
    \end{aligned}\]

    Answer b

    \[\begin{aligned}
    \text { Divide both sides by } m_{C}\left(T_{F}-T_{C}\right)\\
    c_{C}\left(\frac{m_{C}\left(T_{F}-T_{C}\right)}{m_{C}\left(T_{F}-T_{C}\right)}\right)&=\frac{-m_{H} c_{H}\left(T_{F}-T_{H}\right)}{m_{C}\left(T_{F}-T_{C}\right)}\\
    c_{C}&=\frac{-m_{H} c_{H}\left(T_{F}-T_{H}\right)}{m_{C}\left(T_{F}-T_{C}\right)}
    \end{aligned}\]

    Answer c

    Step 1: Place all terms with TC on one side of the equal sign and everything else on the other side

    \[\begin{aligned}
    m_{C} c_{C}\left(T_{F}-T_{C}\right)&=-m_{H}c_{H}\left(T_{F}-T_{H}\right)\\
    m_{C} c_{C}T_{F}-m_{C} c_{C}T_{C}&=-m_{H}c_{H}(T_{F}-T_{H})\\
    -m_{C} c_{C}T_{C}&=m_{C} c_{C}T_{F}-m_{H}c_{H}(T_{F}-T_{H})
    \end{aligned}\nonumber\]

    Step 2: Solve for TC by dividing both sides by \(-m_{C} c_{c}\)

    \[\begin{aligned}
    \frac{-m_{C} c_{C}T_{C}}{-m_{C} c_{C}}&=\frac{m_{C} c_{C}T_{F}-m_{H}c_{H}(T_{F}-T_{H})}{-m_{C} c_{C}}\\
    T_{C}&=T_{F}+\frac{m_{H}c_{H}(T_{F}-T_{H})}{m_{C} c_{C}}
    \end{aligned}\nonumber\]

    Answer d

    Step 1: Place all terms with TF on one side of the equal sign and everything else on the other side

    \[\begin{aligned}
    m_{C} c_{C}\left(T_{F}-T_{C}\right)&=-m_{H}c_{H}\left(T_{F}-T_{H}\right)\\
    m_{C} c_{C}T_{F}-m_{C} c_{C}T_{C}&=-m_{H} c_{H}T_{F}-m_{H} c_{H}T_{H}\\
    m_{C} c_{C}T_{F}+m_{H} c_{H}T_{F}&=m_{C} c_{C}T_{C}+m_{H} c_{H}T_{H}\\
    T_{F}(m_{C} c_{C}+m_{H} c_{H})&=m_{C} c_{C}T_{C}+m_{H} c_{H}T_{H}\\
    \end{aligned}\nonumber\]

    Step 2: Solve for TC by dividing both sides by \(m_{C} c_{C}+m_{H} c_{H}\)

    \[T_{F}=\frac{m_{C} c_{C}T_{C}+m_{H} c_{H}T_{H}}{(m_{C} c_{C}+m_{H} c_{H})}\nonumber\]

     

    1-2-Math

     

    Exercise \(\PageIndex{1}\)

    Consider all of the following values to be measured numbers. Review your rules on significant figures and be sure you can do these without a calculator.

    1. 12.56 + 2.4
    2. 98.3-89.4
    3. 82.0 + 34.4
    4. 312.56 X 2.4
    Answer a

    15.0

    Review the Rules for Addition and Subtraction:
    The exact answer is 14.96 but 2.4 is only known to the 10ths position, so you truncate the answer there. You round up because the 6 (in the 100ths position) is greater than or equal to 5.

    Answer b

    8.9

    Review the Rules for Addition and Subtraction:
    Although both numbers have 3 significant figures the answer has 2 because they are only known to the 10th position.

    Answer c

    116.4

    Review the Rules for Addition and Subtraction:
    Although both numbers are known to 3 significant figures the answer has 4 because they are all known to the 10th position.

    Answer d

    30

    Review the Rules for Division and Multiplication:
    The answer will have the number of significant digits as the number with the least.

     

    Exercise \(\PageIndex{2}\)

    Consider all of the following values to be measured numbers. Review your rules on significant figures and be sure you can do these without a calculator.

    Solve the following to the correct number of significant figures:

    1. \(\frac{198.1}{12.1+198.1}\)
    2. \(\frac{12.1}{12.1+198.1}\)
    3. \(\frac{4.12}{384}\)
    4. 3\(412-0.4\)
    Answer a

    0.9424

    Note the denominator has 4 not 3 sig figs

    \(\frac{198.1}{12.1+198.1}=\frac{198.1\text{(4 sig figs)}}{ 210.2 \text{(4 sig figs)}}=0.9424\) final answer has four sig figs

    Answer b

    0.0576

    \(\frac{12.1}{12.1+198.1}=\frac{12.1\text{(3 sig figs)}}{ 210.2 \text{(4 sig figs)}}=0.0576\) final answer has three sig figs

    Answer c

    0.0107

    Answer d
    412

    1-3 Significant Figures

     

    Exercise \(\PageIndex{1}\)

    Give the number of significant figures in each measured value.

    1. 0.00204 g
    2. 20400 g
    3. 0.0020400 kg
    4. 20103 mL
    5. 100 students
    6. 0.00001 miles
    7. 2.00x104
    Answer a
    3 sig figs
    Answer b
    3 sig figs
    Answer c
    5 sig figs
    Answer d
    5 sig figs 
     
    Answer e
    3 sig figs
     
    Answer f
    1 sig figs
     
    Answer g
    3 sig figs
     

    1-4 Scientific Notation

    Exercise \(\PageIndex{1}\)

    Convert the following numbers to scientific notation

    1. 234.00
    2. 0.000100
    3. 23470.23
    4. 0.0374600
    Answer a
    2.3400x102
    Answer b
    1.00 x 10-4
    Answer c
     2.347034 x 104
    Answer d
     3.74600 x 10-2

     

    Exercise \(\PageIndex{2}\)

    Express 200 to 2 significant figures

    Answer a
    2.0 x 102

    1-5 Math

    Exercise \(\PageIndex{1}\)

    Solve the following:

    1. (44.5 + 12.1) X (116 - 104)
    2. (32.4 - 41) X (4.867 + 2.295)
    3. (0.086 + 0.034) X (1.283 + 0.137)
    4. (2 X 102) X (4 X 103)
    5. 3.18 X 10-3 + 4.6 X 10-4
    6. 8.4 X 10-8 + 3.2x10-3
    7. \(\frac{(6.0221367\times 10^{23})(6.62608\times 10^{-34})}{(2.99792458\times 10^{8})(9.6485309\times 10^{4})}\)
    Answer a
    680
    Note that (116-104) = 12 and has two significant figures
    Answer b

    -60
    Note (32.4-41) has one significant figure (but use -8.6 in the calculation).

    Answer c
    0.170
    Note (0.086 + 0.034) has 3 significant figures
    Answer d
    8 X 105
    Note if you get 8 X 106 you are not correctly using your calculator 
    Answer e
    3.64 X 10-3
    In order to determine the relative precision of each number, you need to bring them to the same power of 10
    \[\begin{align} \nonumber & 3.18\times 10^{-3}  \nonumber \\ + \nonumber &0.46\times 10^{-3} \nonumber \\ \hline \nonumber &3.64\times 10^{-3}\nonumber \end{align} \]
    Answer f
    3.64 X 10-3
    Note, the first number is of the order of 105 smaller than the second and therefor insignificant.
    Answer g
    1.3795x10-23
    \[\frac{(6.0221367\times 10^{23})(6.62608\times 10^{-34})}{(2.99792458\times 10^{8})(9.6485309\times 10^{4})}\nonumber\\\\
    =\frac{(6.0221367)(6.62608)}{(2.99792458)(9.6485309)}\times\frac{(10^{23})(10^{-34})}{(10^{8})( 10^{4})}\nonumber\\\\
    =1.3795\times10^{32-34-8-4}\nonumber\]

     

    1-6 Percent

    Exercise \(\PageIndex{1}\)

    You have a solution made by mixing 41.48 g salt with 972 g water

    a. What is the mass percent water?

    b. What is the mass percent salt?

    Answer a
    \(\frac{972g}{(972g+41.48g)}(100)=\frac{972g}{(1013.48g)}(100)=95.9\%\)
    Note that although the denominator has 4 significant figures, you use them all in the calculation.
    Answer b

    \(\frac{972g}{(972g+41.48g)}(100)=\frac{972g}{(1013.48g)}(100)=4.093\%\)
    Note that although the denominator has 4 significant figures, you use them all in the calculation.

     

    Exercise \(\PageIndex{2}\)

    An ore sample is 1.67% gold. How much pure gold is in 23.4 g of the ore?

    Answer
    \[\begin{align}
    \%&=\frac{Part}{Whole}(100)=\frac{P}{W}(100)\nonumber\\
    P&=\%\frac{W}{100}=1.67\frac{23.4g}{100}=0.39078g\nonumber
    \end{align}\nonumber\]g Au in the ore is 0.391g
    Note that the 100 in the percent is an exact number and does not influence the significant figures in the final answer.

     

    Exercise \(\PageIndex{3}\)

    Modern copper deposits tend to be low grade sulfide ores. What quantity of 0.874% copper ore is required to produce 1.00 lb of copper?

    Answer
    \[\begin{align}
    \%&=\frac{Part}{Whole}(100)=\frac{P}{W}(100)\nonumber\\
    W&=\frac{P}{\%}(100)\nonumber\\
    W&=\frac{1}{0.874}(100)=114lb\nonumber
    \end{align}\nonumber\]

     

    Exercise \(\PageIndex{4}\)

    What mass of sulfur is released upon combustion of 50.0 lbs of low grade coal containing 12.4% sulfur?

    Answer
    \[\begin{align}
    \%&=\frac{Part}{Whole}(100)=\frac{P}{W}(100)\nonumber\\
    P&=\frac{\%W}{100}\nonumber\\
    P&=\frac{(12.4)(50.0)}{100}=6.20lb\nonumber
    \end{align}\nonumber\]

     


    q1402 drafts is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?