Skip to main content
Chemistry LibreTexts

6.14: Collisions between like Gas Molecules

  • Page ID
    206353
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    When we consider collisions between different gas molecules of the same substance, we can denote the relative velocity and the expected value of the relative velocity as \(v_{11}\) and \(\left\langle v_{11}\right\rangle\), respectively. By the argument we make above, we can find the number of collisions between any one of these molecules and all of the others. Letting this collision frequency be \({\widetilde{\nu }}_{11}\), we find

    \[\widetilde{\nu }_{11}=N_1\pi {\sigma }^2_{11}\left\langle v_{11}\right\rangle, \nonumber \]

    where \({\sigma }_{11}=2{\sigma }_1\). Since we have

    \[\left\langle v_{11}\right\rangle =\sqrt{2}\left\langle v_1\right\rangle, \nonumber \]

    while

    \[\left\langle v_1\right\rangle =\sqrt{{8kT}/{\pi }m_1}, \nonumber \]

    we have \(\left\langle v_{11}\right\rangle =4\sqrt{{kT}/{\pi }m_1}\). The frequency of collisions between molecules of the same substance becomes

    \[{\widetilde{\nu }}_{11}=N_1\pi {\sigma }^2_{11}\left\langle v_{11}\right\rangle =4N_1{\sigma }^2_{11}{\left(\frac{\pi kT}{m_1}\right)}^{1/2} \nonumber \]

    The mean time between collisions, \({\tau }_{11}\), is

    \[{\tau }_{11}={1}/{\widetilde{\nu}_{11}} \nonumber \]

    and the mean free path, \({\lambda }_{11}\),

    \[{\lambda }_{11}=\left\langle v_1\right\rangle {\tau }_{11}=\frac{1}{\sqrt{2}N}_1\pi {\sigma }^2_{11} \nonumber \]

    When we consider the rate of collisions between all of the molecules of type \(1\) in a container, \({\rho }_{11}\), there is a minor complication. If we multiply the collision frequency per molecule, \({\widetilde{\nu }}_{11}\), by the number of molecules available to undergo such collisions, \(N_1\), we count each collision twice, because each such collision involves two type \(1\) molecules. To find the collision rate among like molecules, we must divide this product by 2. That is,

    \[{\rho }_{11}=\frac{N_1{\widetilde{\nu }}_{11}}{2}=2N^2_1{\sigma }^2_{11}{\left(\frac{\pi kT}{m_1}\right)}^{1/2} \nonumber \]


    This page titled 6.14: Collisions between like Gas Molecules is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.