7.7: Unit 7 Practice Problems
- Page ID
- 260663
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Question 1.
Given the molarity, find the normality of the acid or base.
0.24 M NaOH
1.2 M H3PO4
0.73 M H2SO4
- Answer
-
0.24M x 1 = 0.24N
1.2M x 3 = 3.6N
0.73M x 2 = 1.5N
Given the normality, find the molarity of the acid or base.
1.5N HCl
0.84N Mg(OH)2
0.9N NH4OH
- Answer
-
1.5N / 1 = 1.5M
0.84N / 2 = 0.42M
0.9N / 1 = 0.9M
Question 2.
Given the H+ concentration, find the OH- concentration, and the pH.
[H+] = 0.0046 M
[H+] = 3.57 x 10-8 M
- Answer
-
Remember the following formulas [H+] x [OH-] = 10-14M pH = -log [H+]
[H+] = 0.0046 M OH- = 10-14/0.0046 = 2.2x10-12 M pH = -log(0.0046) = 2.3
[H+] = 3.57 x 10-8 M OH- = 10-14/3.57x10-8 = 2.8 x 10-7 M pH = -log(3.57x10-8 ) = 7.4
Question 3.
Given the pH, find the H+ concentration and the OH- concentration.
pH = 12.97
pH = 1.3
- Answer
-
Remember the following formulas [H+] = 10-pH [H+] x [OH-] = 10-14M
pH 12.9 [H+] = 10-12.9 = 1.26 x 10-13M [OH-] = 10-14/1.26x10-13 = 0.0794 M
pH 1.3 [H+] = 10-1.3 = 0.050 M [OH-] = 10-14/0.050 = 2.0 x 10-13M
Question 4.
Given the [OH-] concentration find the pH and state whether the concentration is acidic basic or neutral.
[OH-] = 4.6 x 10-2 M
[OH-] = 1.0 x 10-7 M
[OH-] = 5.2 x 10-9 M
- Answer
-
Remember the following formulas [H+] x [OH-] = 10-14M pH = -log [H+]
[OH-] = 4.6 x 10-2 M [H+] = 10-14/4.6x10-2 = 2.2 x 10-13 M pH = -log(2.2 x 10-13) = 12.6 pH above 7 is basic
[OH-] = 1.0 x 10-7 M [H+] = 10-14/1.0x10-7 = 1.0 x 10-7 M pH = -log(1.0 x 10-7) = 7.0 pH of 7 is neutral
[OH-] = 5.2 x 10-9 M [H+] = 10-14/5.2x10-9 = 1.9 x 10-6 M pH = -log( 1.9 x 10-6) = 5.7 pH below 7 is acidic
Question 5.
Write the balanced chemical equation for the neutralization of phosphoric acid and magnesium hydroxide. Then state whether the resulting solution will be slightly acidic, slightly basic, or neutral.
- Answer
-
2H3PO4 + 3Mg(OH)2 → Mg3(PO4)2 + 6H2O
weak acid + strong base = slightly basic
Question 6.
20.5mL of 0.25M sulfuric acid is used to titrate 34.0mL of sodium hydroxide. What is the normality and molarity of sodium hydroxide?
- Answer
-
NaVa = NbVb
Since the formula for sulfuric acid is H2SO4 Na = 0.25M x 2 = 0.50N
(0.50N)(20.5mL) = (Nb)(34.0mL)
Nb = 0.30N
Since the formula for sodium hydroxide is NaOH Mb = 0.30N / 1 = 0.30M
Question 7.
Most toilet cleaners contain acid to help remove mineral deposits from the bowl. If 38mL of toilet cleaner takes 26mL of 0.24N NaOH to titrate it, what is the normality of the toilet cleaner?
- Answer
-
NaVa = NbVb
(Na)(38mL) = (0.24N)(26mL)
Na = 0.16N