Skip to main content
Chemistry LibreTexts

1.7: Unit 1 Practice Problems

  • Page ID
    205367
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

     

    Question 1.

    Give the name and symbol of the prefixes used with SI units to indicate multiplication by the following exact quantities.

    (a) 103

    (b) 10-2

    (c) 0.1

    (d) 10-3

    (e) 1,000,000

    (f) 0.000001

    Answer a

    kilo- (k)

    Answer b

    centi- (c)

    Answer c 

    deci- (d)

    Answer d

    milli- (m)

    Answer e

    Mega- (M)

    Answer f

    micro- (µ)

    Question 2.

    1 m =  __________ km?

    Answer

    0.001km

    1 dm =  __________ m?

    Answer

    0.1m

    One 1 m =  __________ µm?

    Answer

    106 µm

    One nm =  __________  m?

    Answer

    10-9nm

    Question 3.

    Indicate the SI base units or derived units that are appropriate for the following measurements.

    (a) the length of a marathon race (26.2 miles)

    (b) the mass of an automobile

    (c) the volume of a swimming pool

    (d) the density of gold

    (f) the area of a football field

    Answer a

    meter

    Answer b

    kilogram

    Answer c

    cubic meter

    Answer d

    kilogram per cubic meter

    Answer c

    cubic meter

    Answer b

    square meter

    Question 4.

    50.0 inches is equivalent to how many meters? (1m = 39.37in)

    Answer
    \[\mathrm{50.0\: \cancel{in.} \times \dfrac{1\: m}{39.37\:\cancel{in.}}=1.27\: m}\]

    Question 5.

    1.8 yards is equivalent to how many centimeters? (1in = 2.54cm)

    Answer
    \[\mathrm{1.8\: \cancel{yrd.} \times \dfrac{36\: in}{1\:\cancel{yrd.}} \times \dfrac{2.54\: cm}{1\:\cancel{in.}}=160\: cm}\]

    Question 6.

    A car gets 23.4 mi/gal.  Express this mileage in km/L.  (1 mi = 1.61km and 1 gal = 3.785L)

    Answer
    \[\mathrm{\dfrac{23.4\:\cancel{mi.}}{1\:\cancel{gal.}}\times\dfrac{1.61\: km}{1\:\cancel{mi.}}\times\dfrac{1\:\cancel{gal}}{3.785\: L}=9.95\: km/L}\nonumber \]

    Question 7. 

    The area of a table is 24.0ft2.  What is this area in dm2?  (1ft = 3.048dm)

    Answer
    $$24.0ft^{2}*\left ( \frac{3.048dm}{1ft} \right )^{2}=223dm^{2}$$

    Question 8.

    The dimensions of a block are 3.46cm by 4.87cm by 102mm.  What is the volume of the block in cm3 and m3?

    Answer
    Volume = 3.46cm x 4.87cm x 10.2cm = 173cm3     $$173cm^{3}*\left ( \frac{1m}{100cm} \right )^{3}=0.000173m^{3}$$

    Question 9.

    What is the density of a liquid with a mass of 31.1415 g and a volume of 30.13 cm3?

    Answer

    Density = 31.145g / 30.13 cm3 = 1.034 g/cm3

    Question 10.

    What is the mass of a piece of aluminum that has a volume of 12.5mL and a density of 2.7g/cc.  

    Answer

     Remember that 1mL = 1cc             M = V x D = 12.5cc * 2.7g/cc = 34g 

    Question 11.

    What is the thickness of a piece of iron foil with the dimensions of 4.8cm by 5.3cm and a mass of 0.402g?  The density of iron is 7.9g/cm3.  

    Answer

    T = V/A   

    V = 0.402g/7.9g/cc = 0.051cc   

    T = 0.051cc/(4.8cm * 5.3cm)  = 0.0020cm

    Question 12.

    When a serving of mango sticky rice is tested in a bomb calorimeter, the temperature of 4.20L of water rises from 21.0ºC to 73.5ºC . How many dietary calories are in the sticky rice?  The specific heat of water is 1g/calºC .

    Answer

    q=m × c ×(Tfinal−Tinitial)       

    mass of water = V * D = 4200mL * 1g/mL = 4200g       

    q = 4200g * 1cal/gºC * (73.5-21.0) =  220,500cals = 221 kcals or dietary calories

    Contributors 

    • Christy VanRooyen, Oregon Tech
    • Adelaide Clark, Oregon Institute of Technology

     

     

     


    1.7: Unit 1 Practice Problems is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?