1.4b: Bonding and anti-bonding orbitals
- Page ID
- 20870
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We look, first, at the form of the orbitals that correspond to the energies \(\Delta E_{\pm}\), respectively. These can be obtained by solving for the variational coefficients, \(C_1\) and \(C_2\). These will be given by the matrix equation:

For example, using \(E_+=(H_{11}-H_{12})/(1-S)\), the following equations for the coefficients are obtained:
\(\displaystyle H_{11} C_1 + H_{12}C_2\) | \(\textstyle =\) | \(\displaystyle {H_{11}-H_{12} \over 1-S}(C_1+SC_2)\) | |
\(\displaystyle H_{12} C_1 + H_{11}C_2\) | \(\textstyle =\) | \(\displaystyle {H_{11}-H_{12} \over 1-S}(SC_1+C_2)\) |
which are not independent but are satisfied if \(C_1=-C_2\equiv C_+\). Similarly, for \(E=E_-\), we obtain the two equations:
\(\displaystyle (H_{11}C_1 + H_{12}C_2)\) | \(\textstyle =\) | \(\displaystyle {H_{11}+H_{12} \over 1+S}(C_1+SC_2)\) | |
\(\displaystyle (H_{12}C_1 + H_{11}C_2)\) | \(\textstyle =\) | \(\displaystyle {H_{11}+H_{12} \over 1+S}(SC_1+C_2)\) |
which are satisfied if \(C_1=C_2\equiv C_-\). Thus, the two states corresponding to \(E_{\pm}\) are
\(\displaystyle \vert\psi_-\rangle\) | \(\textstyle =\) | \(\displaystyle C_-\left(\vert\psi_1\rangle + \vert\psi_2\rangle \right)\) | |
\(\displaystyle \vert\psi_+\rangle\) | \(\textstyle =\) | \(\displaystyle C_+\left(\vert\psi_1\rangle - \vert\psi_2\rangle \right)\) |
The overall constants \(C_{\pm}\) are determined by requiring that \(\vert\psi_{\pm}\rangle \) both be normalized. For \(C_-\), for example, we find
\(\displaystyle \langle \psi_-\vert\psi_-\rangle\) | \(\textstyle =\) | ![]() | |
\(\textstyle =\) | \(\displaystyle \vert C_-\vert^2\left(1+1+\langle \psi_1\vert\psi_2\rangle + \langle \psi_2\vert\psi_1\rangle \right)\) | ||
\(\textstyle =\) | \(\displaystyle 2\vert C_-\vert^2(1+S)\) | ||
\(\textstyle =\) | \(\displaystyle 1\) |
which requires that
\[C_- = {1 \over 2\sqrt{1+S}}\]
Similarly, it can be shown that
\[C_+ = {1 \over 2\sqrt{1-S}}\]
Thus, the two states become
\(\displaystyle \vert\psi_-\rangle\) | \(\textstyle =\) | \(\displaystyle {1 \over 2\sqrt{1+S}}\left(\vert\psi_1\rangle + \vert\psi_2\rangle \right)\) | |
\(\displaystyle \vert\psi_+\rangle\) | \(\textstyle =\) | \(\displaystyle {1 \over 2\sqrt{1-S}}\left(\vert\psi_1\rangle - \vert\psi_2\rangle \right)\) |
Notice that these are orthogonal:
\[\langle \psi_+\vert\psi_-\rangle = 0\]
Projecting onto a coordinate basis, we have
\(\displaystyle \psi_-({\bf r})\) | \(\textstyle =\) | \(\displaystyle {1 \over 2\sqrt{1+S}}\left(\psi_1({\bf r}) + \psi_2({\bf r})\right)\) | |
\(\displaystyle \psi_+({\bf r})\) | \(\textstyle =\) | \(\displaystyle {1 \over 2\sqrt{1+S}}\left(\psi_1({\bf r}) - \psi_2({\bf r})\right)\) |
The state \(\psi_-\), which corresponds to the energy \(E_-\) admits a chemical bond and is, therefore, called a bonding state. The state \(\psi_+\), which corresponds to the energy \(E_+\) does not admit a chemical bond and is, therefore, called an anti-bonding state. \(\psi_+({\bf r})\) and \(\psi_-({\bf r})\) are examples of what are called molecular orbitals. In this case, they are constructed from linear combinations of atomic orbitals.
The functional form of the two molecular orbitals for H\(_2^+\) within the current approximation scheme is
\(\displaystyle \langle {\bf r}\vert\psi_-\rangle\) | \(\textstyle =\) | ![]() | |
\(\displaystyle \langle {\bf r}\vert\psi_+\rangle\) | \(\textstyle =\) | ![]() |
The contours of these functions are sketched below (the top plot shows the two individual two atomic orbitals, while the middle and bottom show the linear combinations \(\psi_-({\bf r})\) and \(\psi_+({\bf r})\), respectively):