Skip to main content
Chemistry LibreTexts

12.4: Interpretting IR Spectra

  • Page ID
    183008
  • Guided IR Spectrum Interpretation

    Now, let’s take a look at the IR spectrum for 1-hexanol. There is a very broad ‘mountain’ centered at about 3400 cm-1. This signal is characteristic of the O-H stretching mode of alcohols, and is a dead giveaway for the presence of an alcohol group. The breadth of this signal is a consequence of hydrogen bonding between molecules.

    image018.png

    In the spectrum of octanoic acid we see, as expected, the characteristic carbonyl peak, this time at 1709 cm-1. We also see a low, broad absorbance band that looks like an alcohol, except that it is displaced slightly to the right (long-wavelength) side of the spectrum, causing it to overlap to some degree with the C-H region. This is the characteristic carboxylic acid O-H single bond stretching absorbance.

    image020.png

    The spectrum for 1-octene shows two peaks that are characteristic of alkenes: the one at 1642 cm-1 is due to stretching of the carbon-carbon double bond, and the one at 3079 cm-1 is due to stretching of the s bond between the alkene carbons and their attached hydrogens.

    image022.png

    Alkynes have characteristic IR absorbance peaks in the range of 2100-2250 cm-1 due to stretching of the carbon-carbon triple bond, and terminal alkenes can be identified by their absorbance at about 3300 cm-1, due to stretching of the bond between the sp-hybridized carbon and the terminal hydrogen.

    It is possible to identify other functional groups such as amines and ethers, but the characteristic peaks for these groups are considerably more subtle and/or variable, and often are overlapped with peaks from the fingerprint region. For this reason, we will limit our discussion here to the most easily recognized functional groups, which are summarized in this table.

    As you can imagine, obtaining an IR spectrum for a compound will not allow us to figure out the complete structure of even a simple molecule, unless we happen to have a reference spectrum for comparison. In conjunction with other analytical methods, however, IR spectroscopy can prove to be a very valuable tool, given the information it provides about the presence or absence of key functional groups. IR can also be a quick and convenient way for a chemist to check to see if a reaction has proceeded as planned. If we were to run a reaction in which we wished to convert cyclohexanone to cyclohexanol, for example, a quick comparison of the IR spectra of starting compound and product would tell us if we had successfully converted the ketone group to an alcohol.

    More examples of IR spectra

    To illustrate the usefulness of infrared absorption spectra, examples for five C4H8O isomers are presented below their corresponding structural formulas. Try to associate each spectrum with one of the isomers in the row above it.

    c4h8omer.gif
    spectr1.gifspectr2.gifspectr3.gifspectr4.gifspectr5.gif

    Exercises

    Questions

    Q12.7.1

    What functional groups give the following signals in an IR spectrum?

    A) 1700 cm-1

    B) 1550 cm-1

    C) 1700 cm-1 and 2510-3000 cm-1

    Q12.7.2

    How can you distinguish the following pairs of compounds through IR analysis?

    A) CH3OH (Methanol) and CH3CH2OCH2CH3 (Diethylether)

    B) Cyclopentane and 1-pentene.

    C)

    Solutions

    S12.7.1

    S12.7.2

    A) A OH peak will be present around 3300 cm-1 for methanol and will be absent in the ether.

    B) 1-pentene will have a alkene peak around 1650 cm-1 for the C=C and there will be another peak around 3100 cm-1 for the sp2 C-H group on the alkene

    C) Cannot distinguish these two isomers. They both have the same functional groups and therefore would have the same peaks on an IR spectra.

    Contributors