In the vast majority of polar reactions, the electrophilic atom is a carbon atom bonded to an electronegative atom, usually oxygen, nitrogen, sulfur, or a halogen. The concept of electrophilicity is relatively simple: an electron-poor atom with partial positive charge is an attractive target an electron-rich nucleophile. Electrophiles can be challenging to recognize because their partial positive charge is hidden in polar bonds and/or resonance. Allkyl halides and carbonyl groups are useful electrophiles for synthetic organic chemistry.
Electrophilicity of Alkyl Halides
With respect to electronegativity, halogens are more electronegative than carbons. This results in a carbon-halogen bond that is polarized. As shown in the image below, carbon atom has a partial positive charge, while the halogen has a partial negative charge.

Allkyl halides are useful electrophiles for synthetic organic chemistry. Of the four halogens, fluorine is the most electronegative and iodine the least. That means that the electron pair in the carbon-fluorine bond will be dragged most towards the halogen end. Looking at the methyl halides as simple examples:

The following image shows the relative electronegativity of the halogens. Notice, as we move up the periodic table from iodine to fluorine, electronegativity increases.

The following image shows the relationships between bond length, bond strength, and molecular size. As we progress down the periodic table from fluorine to iodine, molecular size increases. As a result, we also see an increase in bond length. Conversely, as molecular size increases and we get longer bonds, the strength of those bonds decreases.

You might have thought that either of these would be more effective in the case of the carbon-fluorine bond with the quite large amounts of positive and negative charge already present. But that's not so - quite the opposite is true! The thing that governs the reactivity is the strength of the bonds which have to be broken. If is difficult to break a carbon-fluorine bond, but easy to break a carbon-iodine one. The relative electrophilicity of alkyl halides is summarized below.

Electrophilicity of the Carbonyl Group
The carbon atom of the carbonyl group (C=O) is electrophilic because the carbon-oxygen double bond is polar and one of the resonance contributors is ionized with a full positiv echarge on the carbonyl carbon. Oxygen is more electronegative than carbon, so electron density is higher on the oxygen side of the bond and lower on the carbon side. Both of these factors combine to increase the electrophilicity of carbonyl groups. Carbonyl chemistry is studied in greater detail in the second semester of organic chemistry.

Exercise
1. Recognizing organic compounds as nucleophiles or electrophiles is an important first step in recognizing and learning patterns of chemical reactivity. Classify the following compounds as nucleophiles or electrophiles.
a) methoxide (CH3O-)
b) formaldehye (CH2O)
c) bromocyclopentane
d) water
e) sodium cyanide
f) methanamine (CH3NH2)
-
- Answer
-
a) charged nucleophile
b) electrophile (Carbonyl carbon has partial positive charge.)
c) electrophile (Alkyl halides are always electrophiles - one reason they are an o-chem student's best friend.)
d) neutral nucleophile
e) charge nucleophile (Don't let the cation distract us from the CN-)
f) neutral nucleophile (The lone pair electrons on the nitrogen are nucleophilic in the same way they are Lewis bases (electron donators).
Contributors and Attributions