Skip to main content
Chemistry LibreTexts

3: Entropy and the Second and Third Laws

  • Page ID
    477367
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    • 3.1: Energy Does not Determine Spontaneity
      There are many spontaneous events in nature. If you open the valve in both cases a spontaneous event occurs. In the first case the gas fills the evacuated chamber, in the second the gases will mix. The state functions \(U\) and \(H\) do not give us a clue what will happen. You might think that only those events are spontaneous that produce heat.  The development of the new state function entropy has brought us much closer to a complete understanding of how heat and work are related.
    • 3.2: Introduction to the Second Law
      The second law of thermodynamics, which introduces us to the topic of entropy, is amazing in how it constrains what we can experience and what we can do in the universe. A spontaneous process is one that will occur without external forces pushing it. A process can be spontaneous even if it happens very slowly. Unfortunately, Thermodynamics is silent on the topic of how fast processes will occur, but is provides us with a powerful toolbox for predicting which processes will be spontaneous.
    • 3.3: Heat Engines and the Carnot Cycle
      To simplify his analysis of the inner workings of an engine, Carnot devised a useful construct for examining what affect engine efficiency. His construct is the heat engine. The idea behind a heat engine is that it will take energy in the form of heat, and transform it into an equivalent amount of work.  Unfortunately, such a device is impractical. As it turns out, nature prevents the complete conversion of energy into work with perfect efficiency. This leads to an important statement of the Sec
    • 3.4: Entropy
      In addition to learning that the efficiency of a Carnot engine depends only on the high and low temperatures, more interesting things can be derived through the exploration of this system.
    • 3.5: Nonequilibrium Isolated Systems Evolve in a Direction That Increases Their Energy Dispersal
      An isolated system, one that does not exchange heat with its surroundings, not at equilibrium will evolve in a direction that increases the overall energy dispersion of the state. The system will reach equilibrium when the energy dispersal, or entropy (\(S\)), is maximum.
    • 3.6: Calculating Entropy Changes
      Entropy changes are fairly easy to calculate so long as one knows initial and final state. For example, if the initial and final volume are the same, the entropy can be calculated by assuming a reversible, isochoric pathway and determining an expression for dq/T. That term can then be integrated from the initial condition to the final conditions to determine the entropy change.
    • 3.7: We Must Always Devise a Reversible Process to Calculate Entropy Changes
      The second law of thermodynamics can be formulated in many ways, but in one way or another, they are all related to the fact that the state function entropy, \(S\), tends to increase over time in isolated systems. The second law has important consequences for the question of how we can use heat to do useful work.
    • 3.8: Comparing the System and the Surroundings
      It is oftentimes important  to calculate both the entropy change of the system as well as that of the surroundings. Depending on the size of the surroundings, they can provide or absorb as much heat as is needed for a process without changing temperature. As such, it is oftentimes a very good approximation to consider the changes to the surroundings as happening isothermally, even though it may not be the case for the system (which is often smaller).
    • 3.9: Heat Capacity as a Function of Temperature
      The heat capacity of the solid substance decreases to zero as the absolute temperature decreases to zero; the curve meets the abscissa at the zero of temperature and does so asymptotically. That this is true for all substances seems like an odd sort of coincidence. Why should all solid substances exhibit essentially the same heat capacity (zero) at one temperature (absolute zero)?
    • 3.10: The Third Law
      The idea that the entropy change for a pure substance goes to zero as the temperature goes to zero finds expression as the third law of thermodynamics: If the entropy of each element in some crystalline state be taken as zero at the absolute zero of temperature, every substance has a positive finite entropy; but at the absolute zero of temperature the entropy may become zero, and does so become in the case of perfect crystalline substances.
    • 3.11: Absolute Entropy
      At any given temperature, the entropy value that is obtained in this way is called the substance’s absolute entropy or its third-law entropy. When the entropy value is calculated for one mole of the substance in its standard state, the resulting absolute entropy is called the standard entropy. The standard entropy is usually given the symbol So . It is usually included in compilations of thermodynamic data for chemical substances.
    • 3.12: Evaluating Entropy Changes Using Thermochemical Cycles
      As for the standard enthalpy of reaction, we can obtain the standard entropy of reaction at a new temperature by evaluating entropy changes around a suitable thermochemical cycle. To do so, we need the standard entropy change at one temperature. We also need heat capacity data for all of the reactants and products.


    3: Entropy and the Second and Third Laws is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?