Skip to main content
Chemistry LibreTexts

1.4: Unsaturated Hydrocarbons

  • Page ID
    364635
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives
    • To name alkenes given formulas and write formulas for alkenes given names.

    Alkenes are hydrocarbons with carbon-to-carbon double bonds (R2C=CR2) and alkynes are hydrocarbons with carbon-to-carbon triple bonds (R–C≡C–R). In these condensed structural formulas "R" is an abbreviation for the rest of the molecule. R-groups are often used in organic chemistry when one distinct part of a molecule is being discussed.

    Collectively, alkenes and alkynes are called unsaturated hydrocarbons because they have fewer hydrogen atoms than does an alkane with the same number of carbon atoms, as is indicated in the following general formulas:

    unsaturated.jpg

    Alkenes

    Organic compounds that contain one or more double or triple bonds between carbon atoms are described as unsaturated. You have likely heard of unsaturated fats. These are complex organic molecules with long chains of carbon atoms, which contain at least one double bond between carbon atoms. Unsaturated hydrocarbon molecules that contain one or more double bonds are called alkenes. Carbon atoms linked by a double bond are bound together by two bonds, one σ bond and one π bond. Double and triple bonds give rise to a different geometry around the carbon atom that participates in them, leading to important differences in molecular shape and properties. The differing geometries are responsible for the different properties of unsaturated versus saturated fats.

    Ethene, C2H4, is the simplest alkene. Each carbon atom in ethene, commonly called ethylene, has a trigonal planar structure. The second member of the series is propene (propylene) (Figure \(\PageIndex{1}\)); the butene isomers follow in the series. Four carbon atoms in the chain of butene allows for the formation of isomers based on the position of the double bond, as well as a new form of isomerism.

    alt
    Figure \(\PageIndex{1}\): Expanded structures, ball-and-stick structures, and space-filling models for the alkenes ethene, propene, and 1-butene are shown.

    Some representative alkenes—their names, structures, and physical properties—are given in Table \(\PageIndex{1}\).

    Table \(\PageIndex{1}\): Physical Properties of Some Selected Alkenes
    IUPAC Name Molecular Formula Condensed Structural Formula Melting Point (°C) Boiling Point (°C)
    ethene C2H4 CH2=CH2 –169 –104
    propene C3H6 CH2=CHCH3 –185 –47
    1-butene C4H8 CH2=CHCH2CH3 –185 –6
    1-pentene C5H10 CH2=CH(CH2)2CH3 –138 30
    1-hexene C6H12 CH2=CH(CH2)3CH3 –140 63
    1-heptene C7H14 CH2=CH(CH2)4CH3 –119 94
    1-octene C8H16 CH2=CH(CH2)5CH3 –102 121

    The first two alkenes in Table \(\PageIndex{1}\), ethene and propene, are most often called by their common names—ethylene and propylene, respectively (Figure \(\PageIndex{2}\)). Ethylene is a major commercial chemical. The US chemical industry produces about 25 billion kilograms of ethylene annually, more than any other synthetic organic chemical. More than half of this ethylene goes into the manufacture of polyethylene, one of the most familiar plastics. Propylene is also an important industrial chemical. It is converted to plastics, isopropyl alcohol, and a variety of other products.

    clipboard_ec3d9f64616bb9f22536446653586c400.png
    Figure \(\PageIndex{2}\): Ethene and Propene. The ball-and-spring models of ethene/ethylene (a) and propene/propylene (b) show their respective shapes, especially bond angles.

    Although there is only one alkene with the formula C2H4 (ethene) and only one with the formula C3H6 (propene), there are several alkenes with the formula C4H8.

    Here are some basic rules for naming alkenes from the International Union of Pure and Applied Chemistry (IUPAC):

    1. The longest chain of carbon atoms containing the double bond is considered the parent chain. It is named using the same stem as the alkane having the same number of carbon atoms but ends in -ene to identify it as an alkene. Thus the compound CH2=CHCH3 is propene.
    2. If there are four or more carbon atoms in a chain, we must indicate the position of the double bond. The carbons atoms are numbered so that the first of the two that are doubly bonded is given the lower of the two possible numbers.The compound CH3CH=CHCH2CH3, for example, has the double bond between the second and third carbon atoms. Its name is 2-pentene (not 3-pentene).
    3. Substituent groups are named as with alkanes, and their position is indicated by a number. Thus, the structure below is 5-methyl-2-hexene. Note that the numbering of the parent chain is always done in such a way as to give the double bond the lowest number, even if that causes a substituent to have a higher number. The double bond always has priority in numbering.

    naming.jpg

    Example \(\PageIndex{1}\)

    Name each compound.

    1. clipboard_e7708582d323c1972aea3cc2187fe608f.png
    1. clipboard_e00994ff317f7e74395cf8325ff339f6e.png

    Solution

    1. The longest chain containing the double bond has five carbon atoms, so the compound is a pentene (rule 1). To give the first carbon atom of the double bond the lowest number (rule 2), we number from the left, so the compound is a 2-pentene. There is a methyl group on the fourth carbon atom (rule 3), so the compound’s name is 4-methyl-2-pentene.
    2. The longest chain containing the double bond has five carbon atoms, so the parent compound is a pentene (rule 1). To give the first carbon atom of the double bond the lowest number (rule 2), we number from the left, so the compound is a 2-pentene. There is a methyl group on the third carbon atom (rule 3), so the compound’s name is 3-methyl-2-pentene.
    Exercise \(\PageIndex{1}\)

    Name each compound.

    1. CH3CH2CH2CH2CH2CH=CHCH3

    2. clipboard_e3b41ac618143b7d43fd524f13c91bcf2.png

    Just as there are cycloalkanes, there are cycloalkenes. These compounds are named like alkenes, but with the prefix cyclo- attached to the beginning of the parent alkene name.

    Example \(\PageIndex{2}\)

    Draw the structure for each compound.

    1. 3-methyl-2-pentene
    2. cyclohexene

    Solution

    1. First write the parent chain of five carbon atoms: C–C–C–C–C. Then add the double bond between the second and third carbon atoms:
      clipboard_eb4825200a1b9d292656d2f07cd1536d1.png

      Now place the methyl group on the third carbon atom and add enough hydrogen atoms to give each carbon atom a total of four bonds.

      clipboard_e00994ff317f7e74395cf8325ff339f6e.png
    2. First, consider what each of the three parts of the name means. Cyclo means a ring compound, hex means 6 carbon atoms, and -ene means a double bond.
      clipboard_eed479396c5c92e696f229560689840e7.png
    Exercise \(\PageIndex{2}\)

    Draw the structure for each compound.

    1. 2-ethyl-1-hexene
    2. cyclopentene

    Alkynes

    Hydrocarbon molecules with one or more triple bonds are called alkynes; they make up another series of unsaturated hydrocarbons. Two carbon atoms joined by a triple bond are bound together by one σ bond and two π bonds. The sp-hybridized carbons involved in the triple bond have bond angles of 180°, giving these types of bonds a linear, rod-like shape.

    The simplest member of the alkyne series is ethyne, C2H2, commonly called acetylene. The Lewis structure for ethyne, a linear molecule, is:

    The structural formula and name for ethyne, also known as acetylene, are shown. In red, two C atoms are shown with a triple bond illustrated by three horizontal line segments between them. Shown in black at each end of the structure, a single H atom is bonded.

    The IUPAC nomenclature for alkynes is similar to that for alkenes except that the suffix -yne is used to indicate a triple bond in the chain. For example, \(\mathrm{CH_3CH_2C≡CH}\) is called 1-butyne.

    Example \(\PageIndex{3}\): Structure of Alkynes

    Describe the geometry and hybridization of the carbon atoms in the following molecule:

    A structural formula is shown with C H subscript 3 bonded to a C atom which is triple bonded to another C atom which is bonded to C H subscript 3. Each C atom is labeled 1, 2, 3, and 4 from left to right.

    Solution

    Carbon atoms 1 and 4 have four single bonds and are thus tetrahedral with sp3 hybridization. Carbon atoms 2 and 3 are involved in the triple bond, so they have linear geometries and would be classified as sp hybrids.

    Exercise \(\PageIndex{3}\)

    Identify the hybridization and bond angles at the carbon atoms in the molecule shown:

    A structural formula is shown with an H atom bonded to a C atom. The C atom has a triple bond with another C atom which is also bonded to C H. The C H has a double bond with another C H which is also bonded up and to the right to C H subscript 3. Each C atom is labeled 1, 2, 3, 4, or 5 from left to right.

    Answer

    carbon 1: sp, 180°; carbon 2: sp, 180°; carbon 3: sp2, 120°; carbon 4: sp2, 120°; carbon 5: sp3, 109.5°

    Aromatic Hydrocarbons

    Benzene, C6H6, is the simplest member of a large family of hydrocarbons, called aromatic hydrocarbons. These compounds contain ring structures and exhibit bonding that must be described using the resonance hybrid concept of valence bond theory or the delocalization concept of molecular orbital theory. (To review these concepts, refer to the earlier chapters on chemical bonding). The resonance structures for benzene, C6H6, are:

    This structural formula shows a six carbon hydrocarbon ring. On the left side there are six C atoms. The C atom on top and to the left forms a single bond to the C atom on the top and to the right. The C atom has a double bond to another C atom which has a single bond to a C atom. That C atom has a double bond to another C atom which has a single bond to a C atom. That C atom forms a double bond with another C atom. Each C atom has a single bond to an H atom. There is a double sided arrow and the structure on the right is almost identical to the structure on the left. The structure on the right shows double bonds where the structure on the left showed single bonds. The structure on the right shows single bonds where the stucture on the left showed double bonds.
    Figure \(\PageIndex{3}\).
    A six carbon hydrocarbon ring structural formula is shown. Each C atom is bonded to only one H atom. A circle is at the center of the ring.
    Figure \(\PageIndex{3}\): This condensed formula shows the unique bonding structure of benzene.

    There are many derivatives of benzene. The hydrogen atoms can be replaced by many different substituents. Aromatic compounds more readily undergo substitution reactions than addition reactions; replacement of one of the hydrogen atoms with another substituent will leave the delocalized double bonds intact. The following are typical examples of substituted benzene derivatives:

    Three structural formulas are shown. The first is labeled toluene. This molecule has a six carbon hydrocarbon ring in which five of the C atoms are each bonded to only one H atom. At the upper right of the ring, the C atom that does not have a bonded H atom has a red C H subscript 3 group attached. A circle is at the center of the ring. The second is labeled xylene. This molecule has a six carbon hydrocarbon ring in which four of the C atoms are each bonded to only one H atom. At the upper right and right of the ring, the two C atoms that do not have bonded H atoms have C H subscript 3 groups attached. These C H subscript 3 groups appear in red. A circle is at the center of the ring. The third is labeled styrene. This molecule has a six carbon hydrocarbon ring in which five of the carbon atoms are each bonded to only one H atom. At the upper right of the ring, the carbon that does not have a bonded H atom has a red C H double bond C H subscript 2 group attached. A circle is at the center of the ring.

    Toluene and xylene are important solvents and raw materials in the chemical industry. Styrene is used to produce the polymer polystyrene.

    Example \(\PageIndex{4}\): Structure of Aromatic Hydrocarbons

    One possible isomer created by a substitution reaction that replaces a hydrogen atom attached to the aromatic ring of toluene with a chlorine atom is shown here. Draw two other possible isomers in which the chlorine atom replaces a different hydrogen atom attached to the aromatic ring:

    Two structural formulas are shown. The first has a six carbon hydrocarbon ring in which four of the carbon atoms are each bonded to only one H atom. At the upper right of the ring, the carbon that does not have a bonded H atom has a C H subscript 3 group attached. The C to the lower right has a C l atom attached. A circle is at the center of the ring. The second molecule has a hexagon with a circle inside. From a vertex of the hexagon at the upper right a C H subscript 3 group is attached. From the vertex at the lower right, a C l atom is attached.

    Solution

    Since the six-carbon ring with alternating double bonds is necessary for the molecule to be classified as aromatic, appropriate isomers can be produced only by changing the positions of the chloro-substituent relative to the methyl-substituent:

    Two pairs of structural formulas are shown. The first has a six carbon hydrocarbon ring in which four of the C atoms are each bonded to only one H atom. At the upper right of the ring, the C atom that does not have a bonded H atom has a C H subscript 3 group attached. The C atom to the right has a C l atom attached. A circle is at the center of the ring. The second molecule in the first pair has a hexagon with a circle inside. From a vertex of the hexagon at the upper right a C H subscript 3 group is attached. From the vertex at the right, a C l atom is attached. The second pair first shows a six carbon hydrocarbon ring in which four of the C atoms are each bonded to only one H atom. A C l atom is attached to the left-most C atom and a C H subscript 3 group is attached to the right-most C atom. A circle is at the center of the ring. The second molecule in the pair has a hexagon with a circle inside. A C H subscript 3 group is attached to a vertex on the right side of the hexagon and to a vertex on the left side, a C l atom is bonded.

    Exercise \(\PageIndex{4}\)

    Draw three isomers of a six-membered aromatic ring compound substituted with two bromines.

    Answer

    Three pairs of structural formulas are shown. The first has a six carbon hydrocarbon ring in which four of the C atoms are each bonded to only one H atom. At the upper right and right of the ring, the two C atoms that do not have bonded H atoms have one B r atom bonded each. A circle is at the center of the ring. Beneath this structure, a similar structure is shown which has a hexagon with a circle inside. From vertices of the hexagon at the upper right and right single B r atoms are attached. The second has a six carbon hydrocarbon ring in which four of the C atoms are each bonded to only one H atom. At the upper right and lower right of the ring, the two C atoms that do not have bonded H atoms have a single B r atom bonded each. A circle is at the center of the ring. Beneath this structure, a similar structure is shown which has a hexagon with a circle inside. From vertices of the hexagon at the upper right and lower right single B r atoms are attached. The third has a six carbon hydrocarbon ring in which four of the C atoms are each bonded to only one H atom. At the upper right and lower left of the ring, the two C atoms that do not have bonded H atoms have B r atoms bonded. A circle is at the center of the ring. Beneath this structure, a similar structure is shown which has a hexagon with a circle inside. From vertices of the hexagon at the upper right and lower left, single B r atoms are attached.

    Contributors and Attributions

    Key Takeaways

    • Alkenes are hydrocarbons with one or more carbon-to-carbon double bonds.
    • Alkynes are hydrocarbons with one or more carbon-to-carbon triple bonds.
    • Aromatic hydrocarbons contain ring structures with delocalized π electron systems.

    1.4: Unsaturated Hydrocarbons is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.