Skip to main content
Chemistry LibreTexts

12.9: Additional Resources

  • Page ID
    220771
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The following set of experiments introduce students to the applications of chromatography and electrophoresis. Experiments are grouped into five categories: gas chromatography, high-performance liquid chromatography, ion-exchange chromatography, size-exclusion chromatography, and electrophoresis.

    Gas Chromatography

    • Bishop, R. D., Jr. “Using GC–MS to Determine Relative Reactivity Ratios,” J. Chem. Educ. 1995, 72, 743–745.

    • Elderd, D. M.; Kildahl, N. K.; Berka, L. H. “Experiments for Modern Introductory Chemistry: Identification of Arson Accelerants by Gas Chromatography,” J. Chem. Educ. 1996, 73, 675–677.

    • Fleurat-Lessard, P.; Pointet, K.; Renou-Gonnord, M.-F. “Quantitative Determination of PAHs in Diesel Engine Exhausts by GC–MS,” J. Chem. Educ. 1999, 76, 962–965.

    • Galipo, R. C.; Canhoto, A. J.; Walla, M. D.; Morgan, S. L. “Analysis of Volatile Fragrance and Flavor Compounds by Headspace Solid Phase Microextraction and GC–MS,” J. Chem. Educ. 1999, 76, 245–248.

    • Graham, R. C.; Robertson, J. K. “Analysis of Trihalomethanes in Soft Drinks,” J. Chem. Educ. 1988, 65, 735–737.

    • Heinzen, H.; Moyan, P.; Grompone, A. “Gas Chromatographic Determination of Fatty Acid Compositions,” J. Chem. Educ. 1985, 62, 449–450.

    • Kegley, S. E.; Hansen, K. J.; Cunningham, K. L. “Determination of Polychlorinated Biphenyls (PCBs) in River and Bay Sediments,” J. Chem. Educ. 1996, 73, 558–562.

    • Kostecka, K. S.; Rabah, A.; Palmer, C. F., Jr. “GC/MS Analysis of the Aromatic Composition of Gasoline,” J. Chem. Educ. 1995, 72, 853–854.

    • Quach, D. T.; Ciszkowski, N. A.; Finlayson-Pitts, B. J. “A New GC-MS Experiment for the Undergraduate Instrumental Analysis Laboratory in Environmental Chemistry: Methyl-t-butyl Ether and Benzene in Gasoline,” J. Chem. Educ. 1998, 75, 1595–1598.

    • Ramachandran, B. R.; Allen, J. M.; Halpern, A. M. “Air–Water Partitioning of Environmentally Important Organic Compounds,” J. Chem. Educ. 1996, 73, 1058–1061.

    • Rice, G. W. “Determination of Impurities in Whiskey Using Internal Standard Techniques,” J. Chem. Educ. 1987, 64, 1055–1056.

    • Rubinson, J. F.; Neyer-Hilvert, J. “Integration of GC-MS Instrumentation into the Undergraduate Laboratory: Separation and Identification of Fatty Acids in Commercial Fats and Oils,” J. Chem. Educ. 1997, 74, 1106–1108.

    • Rudzinski, W. E.; Beu, S. “Gas Chromatographic Determination of Environmentally Significant Pesticides,” J. Chem. Educ. 1982, 59, 614–615.

    • Sobel, R. M.; Ballantine, D. S.; Ryzhov, V. “Quantitation of Phenol Levels in Oil of Wintergreen Using Gas Chromatography–Mass Spectrometry with Selected Ion Monitoring,” J. Chem. Educ. 2005, 82, 601–603.

    • Welch, W. C.; Greco, T. G. “An Experiment in Manual Multiple Headspace Extraction for Gas Chromatography,” J. Chem. Educ. 1993, 70, 333–335.

    • Williams, K. R.; Pierce, R. E. “The Analysis of Orange Oil and the Aqueous Solubility of d-Limone,” J. Chem. Educ. 1998, 75, 223–226.

    • Wong, J. W.; Ngim, K. K.; Shibamoto, T.; Mabury, S. A.; Eiserich, J. P.; Yeo, H. C. H. “Determination of Formaldehyde in Cigarette Smoke,” J. Chem. Educ. 1997, 74, 1100–1103.

    • Yang, M. J.; Orton, M. L., Pawliszyn, J. “Quantitative Determination of Caffeine in Beverages Using a Combined SPME-GC/MS Method,” J. Chem. Educ. 1997, 74, 1130–1132.

    High-Performance Liquid Chromatography

    • Batchelor, J. D.; Jones, B. T. “Determination of the Scoville Heat Value for Hot Sauces and Chilies: An HPLC Experiment,” J. Chem. Educ. 2000, 77, 266–267.

    • Beckers, J. L. “The Determination of Caffeine in Coffee: Sense or Nonsense?” J. Chem. Educ. 2004, 81, 90–93.

    • Betts, T. A. “Pungency Quantitation of Hot Pepper Sauces Using HPLC,” J. Chem. Educ. 1999, 76, 240–244.

    • Bidlingmeyer, B. A.; Schmitz, S. “The Analysis of Artificial Sweeteners and Additives in Beverages by HPLC,” J. Chem. Educ. 1991, 68, A195–A200.

    • Bohman, O.; Engdahl, K.-A.; Johnsson, H. “High Performance Liquid Chromatography of Vitamin A: A Quantitative Determination,” J. Chem. Educ. 1982, 59, 251–252.

    • Brenneman, C. A.; Ebeler, S. E. “Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics,” J. Chem. Educ. 1999, 76, 1710–1711.

    • Cantwell, F. F.; Brown, D. W. “Liquid Chromatographic Determination of Nitroanilines,” J. Chem. Educ. 1981, 58, 820–823.

    • DiNunzio, J. E. “Determination of Caffeine in Beverages by High Performance Liquid Chromatography,” J. Chem. Educ. 1985, 62, 446–447.

    • Ferguson, G. K. “Quantitative HPLC Analysis of an Analgesic/Caffeine Formulation: Determination of Caffeine,” J. Chem. Educ. 1998, 75, 467–469.

    • Ferguson, G. K. “Quantitative HPLC Analysis of a Psychotherapeutic Medication: Simultaneous Determination of Amitriptyline Hydrochloride and Perphenazine,” J. Chem. Educ. 1998, 75, 1615–1618.

    • Goodney, D. E. “Analysis of Vitamin C by High-Pressure Liquid Chromatography,” J. Chem. Educ. 1987, 64, 187–188.

    • Guevremont, R.; Quigley, M. N. “Determination of Paralytic Shellfish Poisons Using Liquid Chromatography,” J. Chem. Educ. 1994, 71, 80–81.

    • Haddad, P.; Hutchins, S.; Tuffy, M. “High Performance Liquid Chromatography of Some Analgesic Compounds,” J. Chem. Educ. 1983, 60, 166–168.

    • Huang, J.; Mabury, S. A.; Sagebiel, J. C. “Hot Chili Peppers: Extraction, Cleanup, and Measurement of Capscaicin,” J. Chem. Educ. 2000, 77, 1630–1631.

    • Joeseph, S. M.; Palasota, J. A. “The Combined Effect of pH and Percent Methanol on the HPLC Separation of Benzoic Acid and Phenol,” J. Chem. Educ. 2001, 78, 1381–1383.

    • Lehame, S. “The Separation of Copper, Iron, and Cobalt Tetramethylene Dithiocarbamates by HPLC,” J. Chem. Educ. 1986, 63, 727–728.

    • Luo, P.; Luo, M. Z.; Baldwin, R. P. “Determination of Sugars in Food Products,” J. Chem. Educ. 1993, 70, 679–681.

    • Mueller, B. L.; Potts, L. W. “HPLC Analysis of an Asthma Medication,” J. Chem. Educ. 1988, 65, 905–906.

    • Munari, M.; Miurin, M.; Goi, G. “Didactic Application to Riboflavin HPLC Analysis,” J. Chem. Educ. 1991, 68, 78–79.

    • Orth, D. L. “HPLC Determination of Taurine in Sports Drinks,” J. Chem. Educ. 2001, 78, 791– 792.

    • Remcho, V. T.; McNair, H. M.; Rasmussen, H. T. “HPLC Method Development with the Photodiode Array Detector,” J. Chem. Educ. 1992, 69, A117–A119.

    • Richardson, W. W., III; Burns, L. “HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme,” J. Chem. Educ. 1988, 65, 162–163.

    • Silveira, A., Jr.; Koehler, J. A.; Beadel, E. F., Jr.; Monore, P. A. “HPLC Analysis of Chlorophyll a, Chlorophyll b, and \(\beta\)-Carotene in Collard Greens,” J. Chem. Educ. 1984, 61, 264–265.

    • Siturmorang, M.; Lee, M. T. B.; Witzeman, L. K.; Heineman, W. R. “Liquid Chromatography with Electrochemical Detection (LC-EC): An Experiment Using 4-Aminophenol,” J. Chem. Educ. 1998, 75, 1035–1038.

    • Sottofattori, E.; Raggio, R.; Bruno, O. “Milk as a Drug Analysis Medium: HPLC Determination of Isoniazid,” J. Chem. Educ. 2003, 80, 547–549.

    • Strohl, A. N. “A Study of Colas: An HPLC Experiment,” J. Chem. Educ. 1985, 62, 447–448.

    • Tran, C. D.; Dotlich, M. “Enantiomeric Separation of Beta-Blockers by High Performance Liquid Chromatography,” J. Chem. Educ. 1995, 72, 71–73.

    • Van Arman, S. A.; Thomsen, M. W. “HPLC for Undergraduate Introductory Laboratories,” J. Chem. Educ. 1997, 74, 49–50.

    • Wingen, L. M.; Low, J. C.; Finlayson-Pitts, B. J. “Chromatography, Absorption, and Fluorescence: A New Instrumental Analysis Experiment on the Measurement of Polycyclic Aromatic Hydrocarbons in Cigarette Smoke,” J. Chem. Educ. 1998, 75, 1599–1603.

    Ion-Exchange Chromatography

    • Bello, M. A.; Gustavo González, A. “Determination of Phosphate in Cola Beverages Using Nonsuppressed Ion Chromatography,” J. Chem. Educ. 1996, 73, 1174–1176.

    • Kieber, R. J.; Jones, S. B. “An Undergraduate Laboratory for the Determination of Sodium, Potassium, and Chloride,” J. Chem. Educ. 1994, 71, A218–A222.

    • Koubek, E.; Stewart, A. E. “The Analysis of Sulfur in Coal,” J. Chem. Educ. 1992, 69, A146–A148.

    • Sinniah, K.; Piers, K. “Ion Chromatography: Analysis of Ions in Pond Water,” J. Chem. Educ. 2001, 78, 358–362.

    • Xia, K.; Pierzynski, G. “Competitive Sorption between Oxalate and Phosphate in Soil: An Environmental Chemistry Laboratory Using Ion Chromatography,” J. Chem. Educ. 2003, 80, 71–75.

    Size-Exchange Chromatography

    • Brunauer, L. S.; Davis, K. K. “Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs,” J. Chem. Educ. 2008, 85, 683–685.

    • Saiz, E.; Tarazona, M. P. “Size-Exclusion Chromatography Using Dual Detection,” Chem. Educator 2000, 5, 324–328.

    Electrophoresis

    • Almarez, R. T.; Kochis, M. “Microscale Capillary Electrophoresis: A Complete Instrumentation Experiment for Chemistry Students at the Undergraduate Junior or Senior Level,” J. Chem. Educ. 2003, 80, 316–319.

    • Beckers, J. L. “The Determination of Caffeine in Coffee: Sense or Nonsense?” J. Chem. Educ. 2004, 81, 90–93.

    • Beckers, J. L. “The Determination of Vanillin in a Vanilla Extract,” J. Chem. Educ. 2005, 82, 604– 606.

    • Boyce, M. “Separation and Quantification of Simple Ions by Capillary Zone Electrophoresis,” J. Chem. Educ. 1999, 76, 815–819.

    • Conradi, S.; Vogt, C.; Rohde, E. “Separation of Enatiomeric Barbiturates by Capillary Electrophoresis Using a Cyclodextrin-Containing Run Buffer,” J. Chem. Educ. 1997, 74, 1122–1125.

    • Conte, E. D.; Barry, E. F.; Rubinstein, H. “Determination of Caffeine in Beverages by Capillary Zone Electrophoresis,” J. Chem. Educ. 1996, 73, 1169–1170.

    • Demay, S.; Martin-Girardeau, A.; Gonnord, M.-F. “Capillary Electrophoretic Quantitative Analysis of Anions in Drinking Water,” J. Chem. Educ. 1999, 76, 812–815.

    • Emry, R.; Cutright, R. D.; Wright, J.; Markwell, J. “Candies to Dye for: Cooperative, Open-Ended Student Activities to Promote Understanding of Electrophoretic Fractionation,” J. Chem. Educ. 2000, 77, 1323–1324.

    • Gardner, W. P.; Girard, J. E. “Analysis of Common Household Cleaner-Disinfectants by Capillary Electrophoresis,” J. Chem. Educ. 2000, 77, 1335–1338.

    • Gruenhagen, J. A.; Delaware, D.; Ma, Y. “Quantitative Analysis of Non-UV-Absorbing Cations in Soil Samples by High-Performance Capillary Electrophoresis,” J. Chem. Educ. 2000, 77, 1613–1616.

    • Hage, D. S.; Chattopadhyay, A.; Wolfe, C. A. C.; Grundman, J.; Kelter, P. B. “Determination of Nitrate and Nitrite in Water by Capillary Electrophoresis,” J. Chem. Educ. 1998, 75, 1588–1590.

    • Herman, H. B.; Jezorek, J. R.; Tang, Z. “Analysis of Diet Tonic Water Using Capillary Electrophoresis,” J. Chem. Educ. 2000, 77, 743–744.

    • Janusa, M. A.; Andermann, L. J.; Kliebert, N. M.; Nannie, M. H. “Determination of Chloride Concentration Using Capillary Electrophoresis,” J. Chem. Educ. 1998, 75, 1463–1465.

    • McDevitt, V. L.; Rodríguez, A.; Williams, K. R. “Analysis of Soft Drinks: UV Spectrophotometry, Liquid Chromatography, and Capillary Electrophoresis,” J. Chem. Educ. 1998, 75, 625–629.

    • Palmer, C. P. “Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography,” J. Chem. Educ. 1999, 76, 1542–1543.

    • Pursell, C. J.; Chandler, B.; Bushey, M. M. “Capillary Electrophoresis Analysis of Cations in Water Samples,” J. Chem. Educ. 2004, 81, 1783–1786.

    • Solow, M. “Weak Acid pKa Determination Using Capillary Zone Electrophoresis,” J. Chem. Educ. 2006, 83, 1194–1195.

    • Thompson, L.; Veening, H.; Strain, T. G. “Capillary Electrophoresis in the Undergraduate Instrumental Analysis Laboratory: Determination of Common Analgesic Formulations,” J. Chem. Educ. 1997, 74, 1117–1121.

    • Vogt, C.; Conradi, S.; Rhode, E. “Determination of Caffeine and Other Purine Compounds in Food and Pharmaceuticals by Micellar Electrokinetic Chromatography” J. Chem. Educ. 1997, 74, 1126– 1130.

    • Weber, P. L.; Buck, D. R. “Capillary Electrophoresis: A Fast and Simple Method for the Determination of the Amino Acid Composition of Proteins,” J. Chem. Educ. 1994, 71, 609–612.

    • Welder, F.; Colyer, C. L. “Using Capillary Electrophoresis to Determine the Purity of Acetylsalicylic Acid Synthesized in the Undergraduate Laboratory,” J. Chem. Educ. 2001, 78, 1525–1527.

    • Williams, K. R.; Adhyaru, B.; German, I.; Russell, T. “Determination of a Diffusion Coefficient by Capillary Electrophoresis,” J. Chem. Educ. 2002, 79, 1475–1476.

    The following texts provide a good introduction to the broad field of separations, including chromatography and electrophoresis.

    • Giddings, J. C. Unified Separation Science, Wiley-Interscience: New York 1991.

    • Karger, B. L.; Snyder, L. R.; Harvath, C. An Introduction to Separation Science, Wiley-Interscience: New York, 1973

    • Miller, J. M. Separation Methods in Chemical Analysis, Wiley-Interscience: New York, 1975.

    • Poole, C. F. The Essence of Chromatography, Elsevier: Amsterdam, 2003.

    A more recent discussion of peak capacity is presented in the following papers.

    • Chester, T. L. “Further Considerations of Exact Equations for Peak Capacity in Isocratic Liquid Chromatography,” Anal. Chem. 2014, 86, 7239–7241.

    • Davis, J. M.; Stoll, D. R.; Carr, P. W. “Dependence of Effective Peak Capacity in Comprehensive Two-Dimensional Separations on the Distribution of Peak Capacity between the Two Dimensions,” Anal. Chem. 2008, 80, 8122–8134.

    • Li, X.; Stoll, D. R.; Carr, P. W. “Equation for Peak Capacity Estimation in Two-Dimensional Liquid Chromatography,” Anal. Chem. 2009, 81, 845–850.

    • Shen, Y.; Lee, M. “General Equation for Peak Capacity in Column Chromatography,” Anal. Chem. 1998, 70, 3853–3856.

    The following references may be consulted for more information on gas chromatography.

    • Grob, R. L., ed, Modern Practice of Gas Chromatography, Wiley-Interscience: New York, 1972.

    • Hinshaw, J. V. “A Compendium of GC Terms and Techniques,” LC•GC 1992, 10, 516–522.

    • Ioffe, B. V.; Vitenberg, A. G. Head-Space Analysis and Related Methods in Gas Chromatography, Wiley-Interscience: New York, 1982.

    • Kitson, F. G.; Larsen, B. S.; McEwen, C. N. Gas Chromatography and Mass Spectrometry: A Practical Guide, Academic Press: San Diego, 1996.

    • McMaster, M. C. GC/MS: A Practical User’s Guide, Wiley-Interscience: Hoboken, NJ, 2008.

    The following references provide more information on high-performance liquid chromatography.

    • Dorschel, C. A.; Ekmanis, J. L.; Oberholtzer, J. E.; Warren, Jr. F. V.; Bidlingmeyer, B. A. “LC Detectors,” Anal. Chem. 1989, 61, 951A–968A.

    • Ehlert, S.; Tallarek, U. “High-pressure liquid chromatography in lab-on-a-chip devices,” Anal. Bioanal. Chem. 2007, 388, 517–520.

    • Francois, I.; Sandra, K.; Sandra, P. “Comprehensive liquid chromatography: Fundamental aspects and practical considerations—A review,” Anal. Chim. Acta 2009, 641, 14–31.

    • Harris, C. M. “Shrinking the LC Landscape,” Anal. Chem. 2003, 75, 64A–69A.

    • Meyer, V. R. Pitfalls and Errors of HPLC in Pictures, Wiley-VCH: Weinheim, Germany, 2006.

    • Pozo, O. J.; Van Eenoo, P.; Deventer, K.; Delbeke, F. T. “Detection and characterization of anabolic steroids in doping analysis by LC–MS,” Trends Anal. Chem. 2008, 27, 657–671.

    • Scott, R. P. W. “Modern Liquid Chromatography,” Chem. Soc. Rev. 1992, 21, 137–145.

    • Simpson, C. F., ed. Techniques in Liquid Chromatography, Wiley-Hayden: Chichester, England; 1982.

    • Snyder, L. R.; Glajch, J. L.; Kirkland, J. J. Practical HPLC Method Development, Wiley-Interscience: New York,1988.

    • van de Merbel, N. C. “Quantitative determination of endogenous compounds in biological samples using chromatographic techniques,” Trends Anal. Chem. 2008, 27, 924–933.

    • Yeung, E. S. “Chromatographic Detectors: Current Status and Future Prospects,” LC•GC 1989, 7, 118–128.

    The following references may be consulted for more information on ion chromatography.

    • Shpigun, O. A.; Zolotov, Y. A. Ion Chromatography in Water Analysis, Ellis Horwood: Chichester, England, 1988.

    • Smith, F. C. Jr.; Chang, R. C. The Practice of Ion Chromatography, Wiley-Interscience: New York, 1983.

    The following references may be consulted for more information on supercritical fluid chromatography.

    • Palmieri, M. D. “An Introduction to Supercritical Fluid Chromatography. Part I: Principles and Applications,” J. Chem. Educ. 1988, 65, A254–A259.

    • Palmieri, M. D. “An Introduction to Supercritical Fluid Chromatography. Part II: Applications and Future Trends,” J. Chem. Educ. 1989, 66, A141–A147.

    The following references may be consulted for more information on capillary electrophoresis.

    • Baker, D. R. Capillary Electrophoresis, Wiley-Interscience: New York, 1995.

    • Copper, C. L. “Capillary Electrophoresis: Part I. Theoretical and Experimental Background,” J. Chem. Educ. 1998, 75, 343–347.

    • Copper, C. L.; Whitaker, K. W. “Capillary Electrophoresis: Part II. Applications,” J. Chem. Educ. 1998, 75, 347–351.

    • DeFrancesco, L. “Capillary Electrophoresis: Finding a Niche,” Today’s Chemist at Work, February 2002, 59–64.

    • Ekins, R. P. “Immunoassay, DNA Analysis, and Other Ligand Binding Assay Techniques: From Electropherograms to Multiplexed, Ultrasensative Microarrays on a Chip,” J. Chem. Educ. 1999, 76, 769– 780.

    • Revermann, T.; Götz, S.; Künnemeyer, J.; Karst, U. “Quantitative analysis by microchip capillary electrophoresis—current limitations and problem-solving strategies,” Analyst 2008, 133, 167–174.

    • Timerbaev, A. R. “Capillary electrophoresis coupled to mass spectrometry for biospeciation analysis: critical evaluation,” Trends Anal. Chem. 2009, 28, 416–425.

    • Unger, K. K.; Huber, M.; Hennessy, T. P.; Hearn, M. T. W.; Walhagen, K. “A Critical Appraisal of Capillary Electrochromatography,” Anal. Chem. 2002, 74, 200A–207A.

    • Varenne, A.; Descroix, S. “Recent strategies to improve resolution in capillary electrophoresis—A review,” Anal. Chim. Acta 2008, 628, 9–23.

    • Vetter, A. J.; McGowan, G. J. “The Escalator—An Analogy for Explaining Electroosmotic Flow,” J. Chem. Educ. 2001, 78, 209–211.

    • Xu, Y. “Tutorial: Capillary Electrophoresis,” Chem. Educator, 1996, 1(2), 1–14.

    The application of spreadsheets and computer programs for modeling chromatography is described in the following papers.

    • Abbay, G. N.; Barry, E. F.; Leepipatpiboon, S.; Ramstad, T.; Roman, M. C.; Siergiej, R. W.; Snyder, L. R.; Winniford, W. L. “Practical Applications of Computer Simulation for Gas Chromatography Method Development,” LC•GC 1991, 9, 100–114.

    • Drouen, A.; Dolan, J. W.; Snyder, L. R.; Poile, A.; Schoenmakers, P. J. “Software for Chromatographic Method Development,” LC•GC 1991, 9, 714–724.

    • Kevra, S. A.; Bergman, D. L.; Maloy, J. T. “A Computational Introduction to Chromatographic Bandshape Analysis,” J. Chem. Educ. 1994, 71, 1023–1028.

    • Rittenhouse, R. C. “HPLC for Windows: A Computer Simulation of High-Performance Liquid Chromatography,” J. Chem. Educ. 1995, 72, 1086–1087.

    • Shalliker, R. A.; Kayillo, S.; Dennis, G. R. “Optimizing Chromatographic Separations: An Experiment Using an HPLC Simulator,” J. Chem. Educ. 2008, 85, 1265–1268.

    • Sundheim, B. R. “Column Operations: A Spreadsheet Model,” J. Chem. Educ. 1992, 69, 1003– 1005.

    The following papers discuss column efficiency, peak shapes, and overlapping chromatographic peaks.

    • Bildingmeyer, B. A.; Warren, F. V., Jr. “Column Efficiency Measurement,” Anal. Chem. 1984, 56, 1583A–1596A.

    • Hawkes, S. J. “Distorted Chromatographic Peaks,” J. Chem. Educ. 1994, 71, 1032–1033.

    • Hinshaw, J. “Pinning Down Tailing Peaks,” LC•GC 1992, 10, 516–522.

    • Meyer, V. K. “Chromatographic Integration Errors: A Closer Look at a Small Peak,” LC•GC North America 2009, 27, 232–244.

    • Reid, V. R.; Synovec, R. E. “High-speed gas chromatography: The importance of instrumentation optimization and the elimination of extra-column band broadening,” Talanta 2008, 76, 703–717.


    This page titled 12.9: Additional Resources is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?