Skip to main content
Chemistry LibreTexts

11.6: Additional Resources

  • Page ID
    220760
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The following set of experiments introduce students to the applications of electrochemistry. Experiments are grouped into four categories: general electrochemistry, preparation of electrodes, potentiometry, coulometry, and voltammetry and amperometry.

    General Electrochemistry

    • Chatmontree, A.; Chairam, S.; Supasorn, S.; Amatatongchai, M.; Jarujamrus, P; Tamuang, S.; Somsook E. “Student Fabriaction and Use of Simple, Low-Cost, Paper-Based Galvanic Cells to Investigate Electrochemistry,” J. Chem. Educ. 2015, 92, 1044–1048.

    • Mills, K. V.; Herrick, R. S.; Guilmette, L. W.; Nestor, L. P.; Shafer, H.; Ditzler, M. A. “Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment,” J. Chem. Educ. 2008, 85, 1116–119.

    Preparation of Electrodes

    • Christopoulos, T. K.; Diamandis, E. P. “Use of a Sintered Glass Crucible for Easy Construction of Liquid-Membrane Ion-Selective Electrodes,” J. Chem. Educ. 1988, 65, 648.

    • Fricke, G. H.; Kuntz, M. J. “Inexpensive Solid-State Ion-Selective Electrodes for Student Use,” J. Chem. Educ. 1977, 54, 517–520.

    • Inamdar, S. N.; Bhat, M. A.; Haram, S. K. “Construction of Ag/AgCl Reference Electrode form Used Felt-Tipped Pen Barrel for Undergraduate Laboratory,” J. Chem. Educ. 2009, 86, 355–356.

    • Lloyd, B. W.; O’Brien, F. L.; Wilson, W. D. “Student Preparation and Analysis of Chloride and Calcium Ion Selective Electrodes,” J. Chem. Educ. 1976, 53, 328–330.

    • Mifflin, T. E.; Andriano, K. M.; Robbins, W. B. “Determination of Penicillin Using an Immobilized Enzyme Electrode,” J. Chem. Educ. 1984, 61, 638–639.

    • Palanivel, A.; Riyazuddin, P. “Fabrication of an Inexpensive Ion-Selective Electrode,” J. Chem. Educ. 1984, 61, 290.

    • Ramaley, L; Wedge, P. J.; Crain, S. M. “Inexpensive Instrumental Analysis: Part 1. Ion-Selective Electrodes,” J. Chem. Educ. 1994, 71, 164–167.

    • Selig, W. S. “Potentiometric Titrations Using Pencil and Graphite Sensors,” J. Chem. Educ. 1984, 61, 80–81.

    Potentiometry

    • Chan, W. H; Wong, M. S.; Yip, C. W. “Ion-Selective Electrode in Organic Analysis: A Salicylate Electrode,” J. Chem. Educ. 1986, 63, 915–916.

    • Harris, T. M. “Potentiometric Measurement in a Freshwater Aquarium,” J. Chem. Educ. 1993, 70, 340–341.

    • Kauffman, C. A.; Muza, A. L.; Porambo, M. W.; Marsh, A. L. “Use of a Commercial Silver-Silver Chloride Electrode for the Measurement of Cell Potentials to Determine Mean Ionic Activity Coefficients,” Chem. Educator 2010, 15, 178–180.

    • Martínez-Fàbregas, E.; Alegret, S. “A Practical Approach to Chemical Sensors through Potentiometric Transducers: Determination of Urea in Serum by Means of a Biosensor,” J. Chem. Educ. 1994, 71, A67–A70.

    • Moresco, H.; Sansón, P.; Seoane, G. “Simple Potentiometric Determination of Reducing Sugars,” J. Chem. Educ. 2008, 85, 1091–1093.

    • Radic, N.; Komijenovic, J. “Potentiometric Determination of an Overall Formation Constant Using an Ion-Selective Membrane Electrode,” J. Chem. Educ. 1993, 70, 509–511.

    • Riyazuddin, P.; Devika, D. “Potentiometric Acid–Base Titrations with Activated Graphite Electrodes,”J. Chem. Educ. 1997, 74, 1198–1199.

    Coulometry

    • Bertotti, M.; Vaz, J. M.; Telles, R. “Ascorbic Acid Determination in Natural Orange Juice,” J. Chem. Educ. 1995, 72, 445–447.

    • Kalbus, G. E.; Lieu, V. T. “Dietary Fat and Health: An Experiment on the Determination of Iodine Number of Fats and Oils by Coulometric Titration,” J. Chem. Educ. 1991, 68, 64–65.

    • Lötz, A. “A Variety of Electrochemical Methods in a Coulometric Titration Experiment,” J. Chem. Educ. 1998, 75, 775–777.

    • Swim, J.; Earps, E.; Reed, L. M.; Paul, D. “Constant-Current Coulometric Titration of Hydrochloric Acid,” J. Chem. Educ. 1996, 73, 679–683.

    Voltammetry and Amperometry

    • Blanco-López, M. C.; Lobo-Castañón, M. J.; Miranda-Ordieres, A. J. “Homemade Bienzymatic-Amperometric Biosensor for Beverages Analysis,” J. Chem. Educ. 2007, 84, 677–680.

    • García-Armada, P.; Losada, J.; de Vicente-Pérez, S. “Cation Analysis Scheme by Differential Pulse Polarography,” J. Chem. Educ. 1996, 73, 544–547.

    • Herrera-Melián, J. A.; Doña-Rodríguez, J. M.; Hernández-Brito, J.; Pérez-Peña, J. “Voltammetric Determination of Ni and Co in Water Samples,” J. Chem. Educ. 1997, 74, 1444–1445.

    • King, D.; Friend, J.; Kariuki, J. “Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode,” J. Chem. Educ. 2010, 87, 507–509.

    • Marin, D.; Mendicuti, F. “Polarographic Determination of Composition and Thermodynamic Stability Constant of a Complex Metal Ion,” J. Chem. Educ. 1988, 65, 916–918.

    • Messersmith, S. J. “Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment,” J. Chem. Educ. 2014, 91, 1498–1500.

    • Sadik, O. A.; Brenda, S.; Joasil, P.; Lord, J. “Electropolymerized Conducting Polymers as Glucose Sensors,” J. Chem. Educ. 1999, 76, 967–970.

    • Sittampalam, G.; Wilson, G. S. “Amperometric Determination of Glucose at Parts Per Million Levels with Immobilized Glucose Oxidase,” J. Chem. Educ. 1982, 59, 70–73.

    • Town, J. L.; MacLaren, F.; Dewald, H. D. “Rotating Disk Voltammetry Experiment,” J. Chem. Educ. 1991, 68, 352–354.

    • Wang, J. “Sensitive Electroanalysis Using Solid Electrodes,” J. Chem. Educ. 1982, 59, 691–692.

    • Wang, J. “Anodic Stripping Voltammetry,” J. Chem. Educ. 1983, 60, 1074–1075.

    • Wang, J.; Maccà, C. “Use of Blood-Glucose Test Strips for Introducing Enzyme Electrodes and Modern Biosensors,” J. Chem. Educ. 1996, 73, 797–800.

    • Wang, Q.; Geiger, A.; Frias, R; Golden, T. D. “An Introduction to Electrochemistry for Undergraduates: Detection of Vitamin C (Ascorbic Acid) by Inexpensive Electrode Sensors,” Chem. Educator 2000, 5, 58–60.

    The following general references providing a broad introduction to electrochemistry.

    • Adams, R. N. Electrochemistry at Solid Surfaces, Marcel Dekker: New York, 1969.

    • Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Wiley: New York, 1980.

    • Faulkner, L. R. “Electrochemical Characterization of Chemical Systems” in Kuwana, T. E., ed. Physical Methods in Modern Chemical Analysis, Vol. 3, Academic Press: New York, 1983, pp. 137–248.

    • Kissinger, P. T.; Heineman, W. R. Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker: New York, 1984.

    • Lingane, J. J. Electroanalytical Chemistry, 2nd Ed., Interscience: New York, 1958.

    • Sawyer, D. T.; Roberts, J. L., Jr. Experimental Electrochemistry for Chemists, Wiley-Interscience: New York, 1974.

    • Vassos, B. H.; Ewing, G. W. Electroanalytical Chemistry, Wiley-Interscience: New York, 1983.

    These short articles provide a good introduction to important principles of electrochemistry.

    • Faulkner, L. R. “Understanding Electrochemistry: Some Distinctive Concepts,” J. Chem. Educ. 198360, 262–264.

    • Huddle, P. A.; White, M. D.; Rogers, F. “Using a Teaching Model to Correct Known Misconceptions in Electrochemistry,” J. Chem. Educ. 2000, 77, 104–110.

    • Maloy, J. T. “Factors Affecting the Shape of Current-Potential Curves,” J. Chem. Educ. 1983, 60, 285–289.

    • Miles, D. T. “Run-D.M.C.: A Mnemonic Aid for Explaining Mass Transfer in Electrochemical Systems,” J. Chem. Educ. 2013, 90, 1649–1653.

    • Thompson, R. Q.; Craig, N. C. “Unified Electroanalytical Chemistry: Application of the Concept of Equilibrium,” J. Chem. Educ. 2001, 78, 928–934.

    • Zoski, C. G. “Charging Current Discrimination in Analytical Voltammetry,” J. Chem. Educ. 198663, 910–914.

    Additional information on potentiometry and ion-selective electrodes can be found in the following sources.

    • Bakker, E.; Diamond, D.; Lewenstam, A.; Pretsch, E. “Ions Sensors: Current Limits and New Trends,” Anal. Chim. Acta 1999, 393, 11–18.

    • Bates, R. G. Determination of pH: Theory and Practice, 2nd ed., Wiley: New York, 1973.

    • Bobacka, J.; Ivaska, A.; Lewenstam, A. “Potentiometric Ion Sensors,” Chem. Rev. 2008, 108, 329–351.

    • Buck, R. P. “Potentiometry: pH Measurements and Ion Selective Electrodes” in Weissberger, A., ed. Physical Methods of Organic Chemistry, Vol. 1, Part IIA, Wiley: New York, 1971, pp. 61–162.

    • Cammann, K. Working With Ion-Selective Electrodes, Springer-Verlag: Berlin, 1977.

    • Evans, A. Potentiometry and Ion-Selective Electrodes, Wiley: New York, 1987.

    • Frant, M. S. “Where Did Ion Selective Electrodes Come From?” J. Chem. Educ. 1997, 74, 159–166.

    • Light, T. S. “Industrial Use and Application of Ion-Selective Electrodes,” J. Chem. Educ. 1997, 74, 171–177.

    • Rechnitz, G. A. “Ion and Bio-Selective Membrane Electrodes,” J. Chem. Educ. 1983, 60, 282–284.

    • Ruzicka, J. “The Seventies—Golden Age for Ion-Selective Electrodes,” J. Chem. Educ. 1997, 74, 167– 170.

    • Young, C. C. “Evolution of Blood Chemistry Analyzers Based on Ion Selective Electrodes,” J. Chem. Educ. 1997, 74, 177–182.

    The following sources provide additional information on electrochemical biosensors.

    • Alvarez-Icasa, M.; Bilitewski, U. “Mass Production of Biosensors,” Anal. Chem. 1993, 65, 525A– 533A.

    • Meyerhoff, M. E.; Fu, B.; Bakker, E. Yun, J-H; Yang, V. C. “Polyion-Sensititve Membrane Electrodes for Biomedical Analysis,” Anal. Chem. 1996, 68, 168A–175A.

    • Nicolini, C.; Adami, M; Antolini, F.; Beltram, F.; Sartore, M.; Vakula, S. “Biosensors: A Step to Bioelectronics,” Phys. World, May 1992, 30–34.

    • Rogers, K. R.; Williams. L. R. “Biosensors for Environmental Monitoring: A Regulatory Perspective,” Trends Anal. Chem. 1995, 14, 289–294.

    • Schultz, J. S. “Biosensors,” Sci. Am. August 1991, 64–69.

    • Thompson, M.; Krull, U. “Biosensors and the Transduction of Molecular Recognition,” Anal. Chem. 1991, 63, 393A–405A.

    • Vadgama, P. “Designing Biosensors,” Chem. Brit. 1992, 28, 249–252.

    A good source covering the clinical application of electrochemistry is listed below.

    •  Wang, J. Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine, VCH: New York, 1998.

    Coulometry is covered in the following texts.

    • Rechnitz, G. A. Controlled-Potential Analysis, Macmillan: New York, 1963.

    • Milner, G. W. C.; Philips, G. Coulometry in Analytical Chemistry, Pergamon: New York, 1967.

    For a description of electrogravimetry, see the following resource.

    • Tanaka, N. “Electrodeposition”, in Kolthoff, I. M.; Elving, P. J., eds. Treatise on Analytical Chemistry, Part I: Theory and Practice, Vol. 4, Interscience: New York, 1963.

    The following sources provide additional information on polarography and pulse polarography.

    • Flato, J. B. “The Renaissance in Polarographic and Voltammetric Analysis,” Anal. Chem. 1972, 44(11), 75A–87A.

    • Kolthoff, I. M.; Lingane, J. J. Polarography, Interscience: New York, 1952.

    • Osteryoung, J. “Pulse Voltammetry,” J. Chem. Educ. 1983, 60, 296–298.

    Additional Information on stripping voltammetry is available in the following text.

    • Wang, J. Stripping Analysis, VCH Publishers: Deerfield Beach, FL, 1985.

    The following papers discuss the numerical simulation of voltammetry.

    •  Bozzini, B. “A Simple Numerical Procedure for the Simulation of “Lifelike” Linear-Sweep Voltammo- grams,” J. Chem. Educ. 2000, 77, 100–103.
    • Howard, E.; Cassidy, J. “Analysis with Microelectrodes Using Microsoft Excel Solver,” J. Chem. Educ. 2000, 77, 409–411.

    • Kätelhön, E.; Compton, R. G. “Testing and Validating Electroanalytical Simulations,” Analyst, 2015140, 2592–2598.

    • Messersmith, S. J. “Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment,” J. Chem. Educ. 2014, 91, 1498–1500.

    Gathered together here are many useful resources for cyclic voltammetry, including experiments.

    • Carriedo, G. A. “The Use of Cyclic Voltammetry in the Study of the Chemistry of Metal–Carbonyls,” J. Chem. Educ. 1988, 65, 1020–1022.

    • García-Jareño, J. J.; Benito, D.; Navarro-Laboulais, J.; Vicente, F. “Electrochemical Behavior of Electrodeposited Prussian Blue Films on ITO Electrodes,” J. Chem. Educ. 1998, 75, 881–884.

    • Gilles de Pelichy, L. D.; Smith, E. T. “A Study of the Oxidation Pathway of Adrenaline by Cyclic Voltammetry,” Chem. Educator 1997, 2(2), 1–13.

    • Gomez, M. E.; Kaifer, A. E. “Voltammetric Behavior of a Ferrocene Derivative,” J. Chem. Educ. 1992, 69, 502–505.

    • Heffner, J. E.; Raber, J. C.; Moe, O. A.; Wigal, C. T. “Using Cyclic Voltammetry and Molecular Modeling to Determine Substituent Effects in the One-Electron Reduction of Benzoquinones,” J. Chem. Educ. 1998, 75, 365–367.

    • Heinze, J. “Cyclic Voltammetry—Electrochemical Spectroscopy,” Angew. Chem, Int. Ed. Eng. 1984, 23, 831–918.

    • Holder, G. N.; Farrar, D. G.; McClure, L. L. “Voltammetric Reductions of Ring-Substituted Acetophenones. 1. Determination of an Electron-Transfer Mechanism Using Cyclic Voltammetry and Computer Modeling: The Formation and Fate of a Radical Anion,” Chem. Educator 2001, 6, 343–349.

    • Ibanez, J. G.; Gonzalez, I.; Cardenas, M. A. “The Effect of Complex Formation Upon the Redox Potentials of Metal Ions: Cyclic Voltammetry Experiments,” J. Chem. Educ. 1988, 65, 173–175.

    • Ito, T.; Perara, D. M. N. T.; Nagasaka, S. “Gold Electrodes Modified with Self-Assembled Monolayers for Measuring l-Ascobric acid,” J. Chem. Educ. 2008, 85, 1112–1115.

    • Kissinger, P. T.; Heineman, W. R. “Cyclic Voltammetry,” J. Chem. Educ. 1983, 60, 702–706.

    • Mabbott, G. A. “An Introduction to Cyclic Voltammetry,” J. Chem. Educ. 1983, 60, 697–702.

    • Petrovic, S. “Cyclic Voltammetry of Hexachloroiridate (IV): An Alternative to the Electrochemical Study of the Ferricyanide Ion,” Chem. Educator 2000, 5, 231–235.

    • Toma, H. E.; Araki, K.; Dovidauskas, S. “A Cyclic Voltammetry Experiment Illustrating Redox Potentials, Equilibrium Constants and Substitution Reaction in Coordination Chemistry,” J. Chem. Educ. 2000, 77, 1351–1353.

    • Walczak, M. W.; Dryer, D. A.; Jacobson, D. D,; Foss, M. G.; Flynn, N. T. “pH-Dependent Redox Couple: Illustrating the Nernst Equation Using Cyclic Voltammetry,” J. Chem. Educ. 1997, 74, 1195–1197.


    This page titled 11.6: Additional Resources is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?