Skip to main content
Chemistry LibreTexts

2.10: Chapter Summary and Key Terms

  • Page ID
    220663
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Chapter Summary

    There are a few basic numerical and experimental tools with which you must be familiar. Fundamental measurements in analytical chemistry, such as mass, use base SI units, such as the kilogram. Other units, such as energy, are defined in terms of these base units. When reporting a measurement, we must be careful to include only those digits that are significant, and to maintain the uncertainty implied by these significant figures when trans- forming measurements into results.

    The relative amount of a constituent in a sample is expressed as a concentration. There are many ways to express concentration, the most common of which are molarity, weight percent, volume percent, weight-to-volume percent, parts per million and parts per billion. Concentrations also can be expressed using p-functions.

    Stoichiometric relationships and calculations are important in many quantitative analyses. The stoichiometry between the reactants and the products of a chemical reaction are given by the coefficients of a balanced chemical reaction.

    Balances, volumetric flasks, pipets, and ovens are standard pieces of equipment that you will use routinely in the analytical lab. You should be familiar with the proper way to use this equipment. You also should be familiar with how to prepare a stock solution of known concentration, and how to prepare a dilute solution from a stock solution.

    Key Terms

    analytical balance

    desiccator

    graduated cylinder

    molarity

    parts per billion

    scientific notation

    stock solution

    volumetric flask

    weight-to-volume percent

    concentration

    dilution

    meniscus

    normality

    p-function

    significant figures

    tare

    volumetric pipet

    desiccant

    formality

    molality

    parts per million

    quantitative transfer

    SI units

    volume percent

    weight percent

     


    This page titled 2.10: Chapter Summary and Key Terms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?