Skip to main content
Chemistry LibreTexts

3.9: Gram-to-Gram Stoichiometry

  • Page ID
    423626
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives
    • Convert from mass or moles of one substance to mass or moles of another substance in a chemical reaction.

    Mole to Mass Conversions

    In the previous section, we described how to convert between moles of one substance to moles of another substance using the ratios from the balanced chemical equation. We can combine this concept with molar mass conversions to convert from moles to moles to grams.

    As an example, consider the balanced chemical equation

    \[\ce{Fe_2O_3 + 3SO_3 \rightarrow Fe_2(SO_4)_3} \label{Eq1} \]

    If we have 3.59 mol of \(\ce{Fe2O3}\), how many grams of \(\ce{SO3}\) can react with it? We will need to convert from mol -> mol -> grams. First, we construct the appropriate molar ratio, determined from the balanced chemical equation, to calculate the number of moles of \(\ce{SO3}\) needed. Then, using the molar mass of \(\ce{SO3}\) as a conversion factor, we determine the mass that this number of moles of \(\ce{SO3}\) has.

    As usual, we start with the quantity we were given:

    \[\mathrm{3.59\: \cancel{ mol\: Fe_2O_3 } \times \left( \dfrac{3\: mol\: SO_3}{1\: \cancel{ mol\: Fe_2O_3}} \right) =10.77\: mol\: SO_3} \label{Eq2} \]

    The mol \(\ce{Fe2O3}\) units cancel, leaving mol \(\ce{SO3}\) unit. Now, we take this answer and convert it to grams of \(\ce{SO3}\), using the molar mass of \(\ce{SO3}\) as the conversion factor:

    \[\mathrm{10.77\: \bcancel{mol\: SO_3} \times \left( \dfrac{80.06\: g\: SO_3}{1\: \bcancel{ mol\: SO_3}} \right) =862\: g\: SO_3} \label{Eq3} \]

    Our final answer is expressed to three significant figures and we find that 862 g of \(\ce{SO3}\) will react with 3.59 mol of \(\ce{Fe2O3}\).

    The same two-step problem can also be worked out in a single line, rather than as two separate steps, as follows:

    \[ 3.59 \cancel{\, mol \, Fe_2O_3} \times \underbrace{\left( \dfrac{ 3 \bcancel{ \, mol\, SO_3}}{ 1 \cancel{\, mol\, Fe_2O_3}} \right)}_{\text{converts to moles of SO}_3} \times \underbrace{ \left( \dfrac{ 80.06 {\, g \, SO_3}}{ 1 \, \bcancel{ mol\, SO_3}} \right)}_{\text{converts to grams of SO}_3} = 862\, g\, SO_3 \nonumber \]

    We get exactly the same answer when combining all math steps together.

    Example \(\PageIndex{1}\): Generation of Aluminum Oxide

    How many moles of \(\ce{HCl}\) will be produced when 249 g of \(\ce{AlCl3}\) are reacted according to this chemical equation?

    \[\ce{2AlCl_3 + 3H_2O(ℓ) → Al_2O_3 + 6HCl(g)} \nonumber \]

    Solution
     
    Steps for Problem Solving Example \(\PageIndex{1}\)
    Identify the "given" information and what the problem is asking you to "find." Given: 249 g AlCl3
    Find: moles HCl
    List other known quantities. 1 mol AlCl3 = 133.33 g AlCl3
    6 mol of HCl to 2 mol AlCl3
    Prepare a concept map and use the proper conversion factor.
    Flowchart of needed conversion factors: 1 mole AlCl3 to 133.33 grams AlCl3, and 6 moles HCl to 2 moles AlCl3
    Cancel units and calculate. \(249\, \cancel{g\, AlCl_{3}}\times \dfrac{1\, \cancel{mol\, AlCl_{3}}}{133.33\, \cancel{g\, AlCl_{3}}}\times \dfrac{6\, mol\, HCl}{2\, \cancel{mol\, AlCl_{3}}}=5.60\, mol\, HCl\)
    Exercise \(\PageIndex{1}\): Generation of Aluminum Oxide

    How many moles of \(\ce{Al2O3}\) will be produced when 23.9 g of \(\ce{H2O}\) are reacted according to this chemical equation?

    \[\ce{2AlCl_3 + 3H_2O(ℓ) → Al_2O_3 + 6HCl(g)} \nonumber \]

    Answer
    0.442 mol Al2O3

    Mass to Mass Conversions

    In the previous examples, we converted from mol -> mol -> grams. If we start with grams of one substance, we can convert to grams of another substance using the following strategy: grams -> mol -> mol -> grams. This calculation strategy is outlined below:

     

    Example \(\PageIndex{2}\): Decomposition of Ammonium Nitrate

    Ammonium nitrate decomposes to dinitrogen monoxide and water according to the following equation.

    \[\ce{NH_4NO_3} \left( s \right) \rightarrow \ce{N_2O} \left( g \right) + 2 \ce{H_2O} \left( l \right) \nonumber \]

    In a certain experiment, \(45.7 \: \text{g}\) of ammonium nitrate is decomposed. Find the mass of N2O that would be formed.

     
    Steps for Problem Solving Example \(\PageIndex{2}\)
    Identify the "given" information and what the problem is asking you to "find."

    Given: \(45.7 \: \text{g} \: \ce{NH_4NO_3}\)
    Find: Mass \(\ce{N_2O} = ? \: \text{g}\)

    List other known quantities.

    1 mol \(\ce{NH_4NO_3} = 80.06 \: \text{g}\)

    1 mol \(\ce{N_2O} = 44.02 \: \text{g}\)

    1 mol NH4NO3 to 1 mol N2O

    Prepare concept maps and use the proper conversion factors.
    Flowchart of conversion factors: 1 mole NH4NO3 to 80.06 grams NH4NO3, 1 mole N2O to 1 mole NH4NO3, 44.02 grams N2O to 1 mole N2O
    Cancel units and calculate.

    \(45.7 \: \text{g} \: \ce{NH_4NO_3} \times \dfrac{1 \: \text{mol} \: \ce{NH_4NO_3}}{80.06 \: \text{g} \: \ce{NH_4NO_3}} \times \dfrac{1 \: \text{mol} \: \ce{N_2O}}{1 \: \text{mol} \: \ce{NH_4NO_3}} \times \dfrac{44.02 \: \text{g} \: \ce{N_2O}}{1 \: \text{mol} \: \ce{N_2O}} = 25.1 \: \text{g} \: \ce{N_2O}\)

    Exercise \(\PageIndex{2}\): Carbon Tetrachloride

    Methane can react with elemental chlorine to make carbon tetrachloride (\(\ce{CCl_4}\)). The balanced chemical equation is as follows:

    \[\ce{CH4 (g) + 4 Cl2 (g) → CCl2 (l) + 4 HCl (l) } \nonumber \]

    How many grams of \(\ce{HCl}\) are produced by the reaction of 100.0 g of \(\ce{CH4}\)?

    Answer
    908.7g HCl

    Summary

    • The calculation pathway grams -> mol -> mol -> grams can be used to convert between mass of one substance and mass of another substance in a chemical reaction.

    3.9: Gram-to-Gram Stoichiometry is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Marisa Alviar-Agnew & Henry Agnew.