6.7: Using Chemical Formulas as Conversion Factors
- Page ID
- 289387
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)⚙️ Learning Objectives
- Use chemical formulas as conversion factors.
Figure \(\PageIndex{1}\) shows that 2 hydrogen atoms and 1 oxygen atom are required to make one water molecule, 4 hydrogen atoms and 2 oxygen atoms for two water molecules, and 6 hydrogen atoms and 3 oxygen atoms for three water molecules. To make any number of water molecules, the ratio is always the same: 2 hydrogen atoms to 1 oxygen atom.
By using formulas to indicate how many atoms of each element we have in a substance, we can relate the number of molecules to the number of atoms of each element. The possible relationships for 1 mole of water are shown in last column of Table \(\PageIndex{1}\).
Therefore, with 30.2 mol H2O, there would be:
\(30.2\;\cancel{\mathrm{mol}\;{\mathrm H}_2\mathrm O}\times\dfrac{2\;\mathrm{mol}\;\mathrm H}{1\;\cancel{\mathrm{mol}\;{\mathrm H}_2\mathrm O}}=\boxed{\;60.4\;\mathrm{mol}\;\mathrm H}\)
\(30.2\;\cancel{\mathrm{mol}\;{\mathrm H}_2\mathrm O}\times\dfrac{1\;\mathrm{mol}\;\mathrm O}{1\;\cancel{\mathrm{mol}\;{\mathrm H}_2\mathrm O}}=\;\boxed{30.2\;\mathrm{mol}\;\mathrm O}\)
The following example illustrates how we can use the relationships in Table \(\PageIndex{1}\) as conversion factors.
✅ Example \(\PageIndex{1}\): Ethanol
How many moles of hydrogen atoms are present in 2.5 mol of ethanol (C2H6O)?
Solution
Steps for Problem Solving | |
---|---|
Identify the "given" information and what the problem is asking you to "find." |
Given: 2.5 mol C2H6O Find: mol H atoms |
List known relationships. |
1 mol C2H6O = 6 mol H |
Prepare a concept map and use the proper conversion factor. |
\({\color[rgb]{0.8, 0.0, 0.0}\boxed{\;\mathrm{mol}\;{\mathrm C}_2{\mathrm H}_6\mathrm O\;}}\xrightarrow[{1\;\mathrm{mol}\;{\mathrm C}_2{\mathrm H}_6\mathrm O}]{6\;\mathrm{mol}\;\mathrm H}{\color[rgb]{0.0, 0.0, 1.0}\boxed{\;\;\;\;\mathrm{mol}\;\mathrm H\;\;\;\;}}\) |
Calculate the answer. |
\(2.5\:\cancel{\mathrm{mol}\:{\mathrm C}_2{\mathrm H}_6\mathrm O}\times\dfrac{6\:\mathrm{mol}\:\mathrm H}{1\:\cancel{\mathrm{mol}\:{\mathrm C}_2{\mathrm H}_6\mathrm O}}=\boxed{15\:\mathrm{mol}\:\mathrm H}\) |
Think about your result. |
There 6 H atoms per C2H6O molecule, so the final answer should be 6 times as large. |
✏️ Exercise \(\PageIndex{1}\)
How many moles of sodium, sulfur, and oxygen atoms are in a sample containing 6.75 mol of Na2SO4, sodium sulfate?
- Answer
- 13.5 mol Na atoms, 6.75 mol S atoms, and 27.0 mol O atoms
Summary
- In any given formula, the ratio of the number of moles of molecules (or formula units) to the number of moles of atoms can be used as a conversion factor.
This page is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Lance S. Lund (Anoka-Ramsey Community College), Anonymous, Marisa Alviar-Agnew, and Henry Agnew.