Skip to main content
Chemistry LibreTexts

Group

  • Page ID
    18945
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A set G equipped with a binary operation *: G x GG, assigning to a pair (g,h) the product g*h is called a group if:

    1. The operation is associative, i.e. (a*b)*c = a*(b*c).
    2. G contains an identity element (neutral element) e: g*e = e*g = g for all g in G
    3. Every g in G has an inverse element h for which g*h = h*g = e. The inverse element of g is written asg -1.

    Often, the symbol for the binary operation is omitted, the product of the elements g and h is then denoted by the concatenation gh.

    The binary operation need not be commutative, i.e. in general one will have g*h ≠ h*g. In the case that g*h = h*g holds for all g,h in G, the group is an Abelian group.

    A group G may have a finite or infinite number of elements. In the first case, the number of elements of G is the order of G, in the latter case, G is called an infinite group. Examples of infinite groups are space groups and their translation subgroups, whereas point groups are finite groups.


    Group is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Online Dictionary of Crystallography.

    • Was this article helpful?