Skip to main content
Chemistry LibreTexts

1.14.50: Osmotic Pressure

  • Page ID
    389996
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A semi-permeable membrane [1] separates an aqueous solution (where the mole fraction of water equals \(\mathrm{x}_{1}\)) and pure solvent at temperature \(\mathrm{T}\) and ambient pressure. Solvent water flows spontaneously across the membrane thereby diluting the solution. This flow is a consequence of the chemical potential of the solvent in the solution being lower than the chemical potential of pure solvent at the same \(\mathrm{T}\) and \(\mathrm{p}\). If a pressure (\(\mathrm{p} + \pi\)) is applied to the solution, the spontaneous process stops because the solution at pressure (\(\mathrm{p} + \pi\)) and the solvent at pressure \(\mathrm{p}\) are in thermodynamic equilibrium; \(\pi\) is the osmotic pressure. Thus at equilibrium,

    \[\mu_{1}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p}+\pi)=\mu_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p})\]

    Under this equilibrium condition solvent flows in both directions across the semi-permeable membrane but the net flow is zero. In the analysis presented here we take account of the fact, writing \(\mathrm{p}^{\prime}\) for (\(\mathrm{p} + \pi\)), the chemical potential of water in the aqueous solution is given by equation (b).

    \[\begin{aligned}
    &\mu_{1}^{\mathrm{eq}}\left(\mathrm{aq} ; \mathrm{T} ; \mathrm{p}^{\prime}\right)= \\
    &\mu_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0)+\mathrm{p}^{\prime} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \mathrm{K}_{\mathrm{Tl}}^{*}(\ell) \, \mathrm{p}^{\prime}\right] \\
    & \\
    &+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)
    \end{aligned}\]

    Here \(\mathrm{f}_{1}\) is the activity coefficient expressing the extent to which the thermodynamic properties of water in the aqueous solution are not ideal. For the pure solvent water at pressure \(\mathrm{p}\) (i.e. on the other side the of the semi-permeable membrane),

    \[\begin{aligned}
    &\mu_{1}^{\mathrm{eq}}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})= \\
    &\quad \mu_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0)+\mathrm{p}^{\prime} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{Tl}}^{*}(\ell) \, \mathrm{p}\right]
    \end{aligned}\]

    But osmosis experiments explore an equilibrium characterized by equation (d).

    \[\mu_{1}\left(\mathrm{aq} ; \mathrm{T} ; \mathrm{p}^{\prime}\right)=\mu_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p})\]

    Therefore using equations (b) and (c),

    \[\begin{array}{r}
    \mathrm{p}^{\prime} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}^{\prime}\right]+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)= \\
    \mathrm{p} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}\right]
    \end{array}\]

    Or,

    \[\begin{aligned}
    &\mathrm{p} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}^{\prime}\right] \\
    &-\mathrm{p} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}\right]=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)
    \end{aligned}\]

    The terms \(\mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}^{\prime}\right]\) and \(\mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}\right]\) describe the molar volumes of water at pressures \(\mathrm{p}\) and \(\mathrm{p}^{\prime}\); i.e. at pressure \(\mathrm{p}\) and (\(\mathrm{p}+\pi\)). We assume that both terms can be replaced by the molar volumes at average pressure \([(2 \, \mathrm{p}+\pi) / 2]\); namely \(\mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ;(2 \, \mathrm{p}+\pi) / 2]\). Therefore

    \[\pi \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ;(2 \, \mathrm{p}+\pi) / 2]=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)\]

    In the event that \(\pi<<2 \, p\),

    \[\pi \, \mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ; \mathrm{p}]=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)\]

    If the thermodynamic properties of the solutions are ideal, \(\mathrm{f}_{1}\) equals unity. Then

    \[\pi^{\mathrm{id}} \, \mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ; \mathrm{p}]=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1}\right)\]

    In the latter two equations \(\mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p})\) is treated as a constant, independent of the thermodynamic properties of the solution. A further interesting development of equation (i) is possible for a solution prepared using \(\mathrm{n}_{1}\) moles of solvent water and \(\mathrm{n}_{j}\) moles of solute. Thus

    \[-\ln \left(\mathrm{x}_{1}\right)=\ln \left(\frac{1}{\mathrm{x}_{1}}\right)=\ln \left(\frac{\mathrm{n}_{1}+\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)=\ln \left(1+\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)\]

    But . \(\left(\mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1}\right)<<1\). We expand the last term in equation (j).

    \[\ln \left(1+\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)=\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}-\frac{1}{2} \,\left(\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)^{2}+\frac{1}{3} \,\left(\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)^{3}-\ldots . .\]

    If we retain only the first term;

    \[\pi^{\mathrm{id}} \, \mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ; \mathrm{p}]=\mathrm{R} \, \mathrm{T} \,\left(\mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1}\right)\]

    But for a dilute solution, the volume of the solution \(\mathrm{V}\) is given by \(\mathbf{n}_{1} \, \mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ; \mathrm{p}]\).

    Or [2],

    \[\pi^{\mathrm{id}} \, \mathrm{V}(\mathrm{aq})=\mathrm{n}_{\mathrm{j}} \, \mathrm{R} \, \mathrm{T}\]

    But concentration

    \[\mathrm{c}_{\mathrm{j}}=\mathrm{n}_{\mathrm{j}} / \mathrm{V}\]

    Then [3]

    \[\pi^{\mathrm{id}}=\mathrm{c}_{\mathrm{j}} \, \mathrm{R} \, \mathrm{T}\]

    Agreement between \(\pi(\mathrm{obs})\) and \(\pi^{\mathrm{id}}\) for aqueous solutions containing neutral solutes (e.g. sucrose) confirms the validity of the thermodynamic analysis.

    Footnotes

    [1] The term ‘semi-permeable’ in the present context means that the membrane is only permeable to the solvent. Perhaps the optimum semipermeable membrane is the vapor phase.

    [2] Historically, equation(o) owes much to the equation of state for an ideal gas; i.e. \(\mathrm{p} \, \mathrm{V}=\mathrm{n} \, \mathrm{R} \, \mathrm{T}\). From an experimentally found proportionality between \(\pi\) and \(\mathrm{c}_{j}\), van’t Hoff showed that the proportionality constant can be approximated by \(\mathrm{R} \, \mathrm{T}\).

    [3]

    \[\pi=\left[\mathrm{mol} \mathrm{m}^{-3}\right] \,\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right] \,[\mathrm{K}]=\left[\mathrm{J} \mathrm{m}^{-3}\right]=\left[\mathrm{N} \mathrm{m} \mathrm{m}^{-3}\right]=\left[\mathrm{N} \mathrm{m}^{-2}\right]\]


    This page titled 1.14.50: Osmotic Pressure is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?