Skip to main content
Chemistry LibreTexts

1.14.50: Osmotic Pressure

  • Page ID
    389996
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A semi-permeable membrane [1] separates an aqueous solution (where the mole fraction of water equals \(\mathrm{x}_{1}\)) and pure solvent at temperature \(\mathrm{T}\) and ambient pressure. Solvent water flows spontaneously across the membrane thereby diluting the solution. This flow is a consequence of the chemical potential of the solvent in the solution being lower than the chemical potential of pure solvent at the same \(\mathrm{T}\) and \(\mathrm{p}\). If a pressure (\(\mathrm{p} + \pi\)) is applied to the solution, the spontaneous process stops because the solution at pressure (\(\mathrm{p} + \pi\)) and the solvent at pressure \(\mathrm{p}\) are in thermodynamic equilibrium; \(\pi\) is the osmotic pressure. Thus at equilibrium,

    \[\mu_{1}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p}+\pi)=\mu_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}) \nonumber \]

    Under this equilibrium condition solvent flows in both directions across the semi-permeable membrane but the net flow is zero. In the analysis presented here we take account of the fact, writing \(\mathrm{p}^{\prime}\) for (\(\mathrm{p} + \pi\)), the chemical potential of water in the aqueous solution is given by equation (b).

    \[\begin{aligned}
    &\mu_{1}^{\mathrm{eq}}\left(\mathrm{aq} ; \mathrm{T} ; \mathrm{p}^{\prime}\right)= \\
    &\mu_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0)+\mathrm{p}^{\prime} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \mathrm{K}_{\mathrm{Tl}}^{*}(\ell) \, \mathrm{p}^{\prime}\right] \\
    & \\
    &+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)
    \end{aligned} \nonumber \]

    Here \(\mathrm{f}_{1}\) is the activity coefficient expressing the extent to which the thermodynamic properties of water in the aqueous solution are not ideal. For the pure solvent water at pressure \(\mathrm{p}\) (i.e. on the other side the of the semi-permeable membrane),

    \[\begin{aligned}
    &\mu_{1}^{\mathrm{eq}}(\mathrm{aq} ; \mathrm{T} ; \mathrm{p})= \\
    &\quad \mu_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0)+\mathrm{p}^{\prime} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{Tl}}^{*}(\ell) \, \mathrm{p}\right]
    \end{aligned} \nonumber \]

    But osmosis experiments explore an equilibrium characterized by equation (d).

    \[\mu_{1}\left(\mathrm{aq} ; \mathrm{T} ; \mathrm{p}^{\prime}\right)=\mu_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}) \nonumber \]

    Therefore using equations (b) and (c),

    \[\begin{array}{r}
    \mathrm{p}^{\prime} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}^{\prime}\right]+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)= \\
    \mathrm{p} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}\right]
    \end{array} \nonumber \]

    Or,

    \[\begin{aligned}
    &\mathrm{p} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}^{\prime}\right] \\
    &-\mathrm{p} \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}\right]=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)
    \end{aligned} \nonumber \]

    The terms \(\mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}^{\prime}\right]\) and \(\mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p}=0) \,\left[1-(1 / 2) \, \kappa_{\mathrm{T} 1}^{*}(\ell) \, \mathrm{p}\right]\) describe the molar volumes of water at pressures \(\mathrm{p}\) and \(\mathrm{p}^{\prime}\); i.e. at pressure \(\mathrm{p}\) and (\(\mathrm{p}+\pi\)). We assume that both terms can be replaced by the molar volumes at average pressure \([(2 \, \mathrm{p}+\pi) / 2]\); namely \(\mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ;(2 \, \mathrm{p}+\pi) / 2]\). Therefore

    \[\pi \, \mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ;(2 \, \mathrm{p}+\pi) / 2]=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right) \nonumber \]

    In the event that \(\pi<<2 \, p\),

    \[\pi \, \mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ; \mathrm{p}]=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right) \nonumber \]

    If the thermodynamic properties of the solutions are ideal, \(\mathrm{f}_{1}\) equals unity. Then

    \[\pi^{\mathrm{id}} \, \mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ; \mathrm{p}]=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1}\right) \nonumber \]

    In the latter two equations \(\mathrm{V}_{1}^{*}(\ell ; \mathrm{T} ; \mathrm{p})\) is treated as a constant, independent of the thermodynamic properties of the solution. A further interesting development of equation (i) is possible for a solution prepared using \(\mathrm{n}_{1}\) moles of solvent water and \(\mathrm{n}_{j}\) moles of solute. Thus

    \[-\ln \left(\mathrm{x}_{1}\right)=\ln \left(\frac{1}{\mathrm{x}_{1}}\right)=\ln \left(\frac{\mathrm{n}_{1}+\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)=\ln \left(1+\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right) \nonumber \]

    But . \(\left(\mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1}\right)<<1\). We expand the last term in equation (j).

    \[\ln \left(1+\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)=\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}-\frac{1}{2} \,\left(\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)^{2}+\frac{1}{3} \,\left(\frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1}}\right)^{3}-\ldots . . \nonumber \]

    If we retain only the first term;

    \[\pi^{\mathrm{id}} \, \mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ; \mathrm{p}]=\mathrm{R} \, \mathrm{T} \,\left(\mathrm{n}_{\mathrm{j}} / \mathrm{n}_{1}\right) \nonumber \]

    But for a dilute solution, the volume of the solution \(\mathrm{V}\) is given by \(\mathbf{n}_{1} \, \mathrm{V}_{1}^{*}[\ell ; \mathrm{T} ; \mathrm{p}]\).

    Or [2],

    \[\pi^{\mathrm{id}} \, \mathrm{V}(\mathrm{aq})=\mathrm{n}_{\mathrm{j}} \, \mathrm{R} \, \mathrm{T} \nonumber \]

    But concentration

    \[\mathrm{c}_{\mathrm{j}}=\mathrm{n}_{\mathrm{j}} / \mathrm{V} \nonumber \]

    Then [3]

    \[\pi^{\mathrm{id}}=\mathrm{c}_{\mathrm{j}} \, \mathrm{R} \, \mathrm{T} \nonumber \]

    Agreement between \(\pi(\mathrm{obs})\) and \(\pi^{\mathrm{id}}\) for aqueous solutions containing neutral solutes (e.g. sucrose) confirms the validity of the thermodynamic analysis.

    Footnotes

    [1] The term ‘semi-permeable’ in the present context means that the membrane is only permeable to the solvent. Perhaps the optimum semipermeable membrane is the vapor phase.

    [2] Historically, equation(o) owes much to the equation of state for an ideal gas; i.e. \(\mathrm{p} \, \mathrm{V}=\mathrm{n} \, \mathrm{R} \, \mathrm{T}\). From an experimentally found proportionality between \(\pi\) and \(\mathrm{c}_{j}\), van’t Hoff showed that the proportionality constant can be approximated by \(\mathrm{R} \, \mathrm{T}\).

    [3]

    \[\pi=\left[\mathrm{mol} \mathrm{m}^{-3}\right] \,\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right] \,[\mathrm{K}]=\left[\mathrm{J} \mathrm{m}^{-3}\right]=\left[\mathrm{N} \mathrm{m} \mathrm{m}^{-3}\right]=\left[\mathrm{N} \mathrm{m}^{-2}\right] \nonumber \]


    This page titled 1.14.50: Osmotic Pressure is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.