Skip to main content
Chemistry LibreTexts

1.14.35: Internal Pressure: Liquid Mixtures: Excess Property

  • Page ID
    387002
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The thermodynamic equation of state takes the form shown in equation (a).

    \[\left(\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=\mathrm{T} \,\left(\frac{\partial \mathrm{p}}{\partial \mathrm{T}}\right)_{\mathrm{V}}-\mathrm{p} \nonumber \]

    The partial differential \((\partial \mathrm{U} / \partial \mathrm{V})_{\mathrm{T}}\) is the internal pressure, \(\pi_{\mathrm{int}}\) (with units, \(\mathrm{N m}^{-2}\)). A calculus operation relates three interesting partial derivatives in the context of \(\mathrm{p}-\mathrm{V}-\mathrm{T}\) properties; equation (b).

    \[\left(\frac{\partial p}{\partial T}\right)_{V}=-\left(\frac{\partial V}{\partial T}\right)_{p} \,\left(\frac{\partial p}{\partial V}\right)_{T} \nonumber \]

    For a given liquid at defined \(\mathrm{T}\) and \(\mathrm{p}\), the isobaric (equilibrium) thermal expansion, \(\mathrm{E}_{\mathrm{p}}\) equals \((\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}\). The isothermal (equilibrium) compression \(\mathrm{K}_{\mathrm{T}}\) is defined by \(-(\partial \mathrm{V} / \partial \mathrm{p})_{\mathrm{T}}\). According to equations (a) and (b), \(\pi_{\mathrm{int}}\) is given by equation (c).

    \[\pi_{\mathrm{int}}=\left(\mathrm{T} \, \mathrm{E}_{\mathrm{p}} / \mathrm{K}_{\mathrm{T}}\right)-\mathrm{p} \nonumber \]

    For the purpose of the analysis described here, equation (c) describes the equilibrium molar properties of a given binary liquid mixture at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). The internal pressure is a non-Gibbsian property of a liquid. Nevertheless it is interesting to compare internal pressures of real and the corresponding ideal binary liquid mixture [1]. In other words we require an equation for the internal pressure of binary liquid mixture \(\pi_{\mathrm{int}}^{\mathrm{id}}\) having thermodynamic properties which are ideal. Marczak[1] uses equation (c) in which the corresponding molar properties of the mixture, mole fraction composition \(\mathrm{x}_{2}\), \(\mathrm{E}_{\mathrm{pm}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)\) and \(\mathrm{K}_{\mathrm{Tm}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)\) are given by the mole fraction weighted properties of the pure liquids.

    \[\mathrm{E}_{\mathrm{pm}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{E}_{\mathrm{pi}}^{*}(\ell) \nonumber \]

    \[\mathrm{K}_{\mathrm{Tm}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell) \nonumber \]

    Equations (d) and (e) can be generalised to multi-component liquid mixtures. From equation (c) for a binary liquid mixture having thermodynamic properties which are ideal, the internal pressure \(\pi_{\mathrm{int}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)\) is given by equation (f).

    \[\pi_{\mathrm{int}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=\mathrm{T} \, \frac{\mathrm{E}_{\mathrm{pm}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)}{\mathrm{K}_{\mathrm{Tm}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)}-\mathrm{p} \nonumber \]

    Or using equations (d) and (e),

    \[\pi_{\mathrm{int}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=\frac{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{~T} \, \mathrm{x}_{\mathrm{i}} \, \mathrm{E}_{\mathrm{pi}}^{*}(\ell)}{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)}-\mathrm{p} \nonumber \]

    Equation (g) is re-written to establish \(\pi_{\mathrm{int,i}}^{*}(\ell)\) as a term on the r.h.s. of the latter equation for \(\pi_{\mathrm{int}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)\).

    \[\pi_{\mathrm{int}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=-\mathrm{p}+\frac{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{~T} \, \mathrm{x}_{\mathrm{i}} \, \mathrm{E}_{\mathrm{pi}}^{*}(\ell) \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell) / \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)}{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)} \nonumber \]

    But according to equation (c) , for the pure liquid–\(\mathrm{i}\),

    \[\pi_{\mathrm{im}, \mathrm{i}}^{*}(\ell)+\mathrm{p}=\mathrm{T} \, \mathrm{E}_{\mathrm{pi}}^{*}(\ell) / \mathrm{K}_{\mathrm{Ti}}^{*}(\ell) \nonumber \]

    Hence from equation (h),

    \[\pi_{\mathrm{int}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=-\mathrm{p}+\frac{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \,\left[\pi_{\mathrm{int,i}}^{*}(\ell)+\mathrm{p}\right] \, \mathrm{K}_{\mathrm{T}_{1}}^{*}(\ell)}{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}^{*}}(\ell)} \nonumber \]

    In other words,

    \[\begin{aligned}
    \pi_{\mathrm{idt}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=&-\mathrm{p}+\frac{\mathrm{x}_{1} \, \pi_{\mathrm{int1} 1}^{*}(\ell) \, \mathrm{K}_{\mathrm{T} 1}^{*}(\ell)}{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)}+\frac{\mathrm{x}_{1} \, \mathrm{p} \, \mathrm{K}_{\mathrm{T} 1}^{*}(\ell)}{\sum_{\mathrm{i}=2}^{*} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)} \\
    &+\frac{\mathrm{x}_{2} \, \pi_{\mathrm{int}, 2}^{*}(\ell) \, \mathrm{K}_{\mathrm{T} 2}^{*}(\ell)}{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)}+\frac{\mathrm{x}_{2} \, \mathrm{p} \, \mathrm{K}_{\mathrm{T} 2}^{*}(\ell)}{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)}
    \end{aligned} \nonumber \]

    Hence,

    \[\pi_{\mathrm{int}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=\frac{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \pi_{\mathrm{int}, \mathrm{i}}^{*}(\ell) \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)}{\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)} \nonumber \]

    By definition [1], for liquid component \(\mathrm{k}\),

    \[\Psi_{\mathrm{k}}=\frac{\mathrm{x}_{\mathrm{k}} \, \mathrm{K}_{\mathrm{Tk}}^{*}(\ell)}{\sum \mathrm{x}_{\mathrm{i}} \, \mathrm{K}_{\mathrm{Ti}}^{*}(\ell)} \nonumber \]

    In other words,

    \[\pi_{\mathrm{int}}^{\mathrm{id}}\left(\mathrm{x}_{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \psi_{\mathrm{i}} \, \pi_{\mathrm{int,i}}^{*}(\ell) \nonumber \]

    The corresponding excess internal pressure at mole fraction \(\mathrm{x}_{2}\),

    \[\pi_{\mathrm{int}}^{\mathrm{E}}\left(\mathrm{x}_{2}\right) \nonumber \]

    is defined by equation (o).

    \[\pi_{\mathrm{int}}^{\mathrm{E}}\left(\mathrm{x}_{2}\right)=\pi_{\mathrm{int}}\left(\mathrm{x}_{2}\right)-\sum_{\mathrm{i}=1}^{\mathrm{i}=2} \psi_{\mathrm{i}} \, \pi_{\mathrm{int}, \mathrm{i}}^{*}(\ell) \nonumber \]

    Marczak [1] reports \(\pi_{\text {int }}^{E}\left(X_{2}\right)\) as a function of mole fraction \(\mathrm{x}_{2}\) for two binary liquid mixtures at \(298.15 \mathrm{~K}\);

    1. methanol + propan-1-ol, and
    2. tribromomethane + n-octane.

    Footnotes

    [1] W. Marczak, Phys. Chem. Chem. Phys.2002,4,1889.


    This page titled 1.14.35: Internal Pressure: Liquid Mixtures: Excess Property is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.